MME XXX: Optimization Techniques				
Designed for: B. Tech	Semester: Odd	Year: Fourth		
Course: Open elective	Credits:3.0	Hours:40		

Course context and overview:

In an Industry, engineers are always are always ask to lower the production cost to withstand global competition. This ever-increasing demand on engineers encourage them to look for rigorous methods of decision making such as optimization methods, to design and produce products and systems both economically and efficiently. Optimization techniques are being used in a wide spectrum of industries, including aerospace, automotive, chemical, electrical, construction, and manufacturing industries. The objective of this course is to understand the optimization methods developed for solving various types of optimization problems. This course will develop and promote research interest in applying optimization techniques in problems of Engineering and Technology.

Prerequisites Courses: M1

Course Outcomes (COs):

After successful completion of the course, students will be able to

CO1: Understand the basic principle of optimization and formulate the optimization problems

CO2: Understand the classical and traditional optimization techniques

CO3: Apply mathematical techniques to solve optimization problems

CO4: Develop and formulate optimization problems from the data and description available

from the real-life engineering problems

Text Books:

1. Singiresu S. Rao, Engineering Optimization-Theory and Practice, Published by John Wiley & Sons, Inc., Hoboken, New Jersey

2. Kalyanmoy deb, Optimization for Engineering Design: Algorithms and Examples, PHI Learning Pvt. Ltd

Reference books:

1. L. R. Foulds, Optimization Techniques: An Introduction, Springer publication

Additional Resources: NPTEL, MIT Video Lectures, Web resources etc.

UNITS	COURSE TOPIC	Lecture Hours
UNIT 1	Introduction to optimization	6
	Introduction,	
	Statement of an optimization problems: Design vector, Design constraints	2
	and surface, objective function and surface	
	Classification of optimization problems: Based on constraints, nature and	
	permissible values of design variables, physical structure of the problem,	4
	nature of equations involved, deterministic nature of variables, separability	
	of functions, number of objective functions.	
UNIT 2	Classical Optimization Techniques	8
	Single Variable Optimization,	
	Multivariable Optimization with no Constraints: Semidefinite case, saddle	2
	point	
	Multivariable Optimization with Equality Constraints: Solution by direct	4
	substitution, method of constrained variation, Method of Lagrange	-
	multipliers	
	Multivariable Optimization with Inequality Constraints: Kuhn-Tucker	2
	conditions, constraint qualification	
UNIT 3	Unconstrained and Constrained Optimization Techniques	12
	One dimensional Minimization methods: Unimodal function, Exhaustive	

	Search, Fibonacci Method, Golden Section method, Interpolation Methods	
	Direct search methods: Random search methods, Pattern and Grid Search	
	Methods, Powell's method.	
	Indirect Search Methods: Steepest descent Methods, Conjugate Gradient	
	Method, Penalty Function Method,	•
UNIT 4	Optimal Control and Optimality Criterion Methods	8
	Introduction,	
	Calculus of variations: Introduction, Problems of calculus of variations,	3
	Lagrange multipliers and constraints	U
	Optimal Control Theory: Necessary conditions for optimal control and	3
	general problem	C
	Optimality criteria methods: With single and multiple displacement	2
	constraints	_
UNIT 5	Modern methods of Optimization Techniques	6
	Introduction to advanced optimization techniques:	
	Genetic Algorithms: Introduction, Representation of design variables, objective function and constraints, Genetic operators	
	Simulated Annealing, Particle swarm optimization, Ant colony	2
	optimization, optimization of fuzzy systems, Neural-network-based	-
	optimization.	

Evaluation Methods:

Evaluation criteria will be shared by the concerned course instructor.

Prepared By: Dr. Servesh Kumar Agnihotri Last Update: 19/07/2020