The LNMIIT, Jaipur

MME209: Engineering Thermodynamics

Programme: B. Tech (MME) Course: core

Year: Second Year Credits: L-3+T-1= 4 Semester: III Hours: 40(L)+14(T)

Objectives:

- Identify and use units and notations in thermodynamics.
- State and illustrate the first and second laws of thermodynamics.
- Identify and explain the concepts of entropy, enthalpy, specific energy, reversibility, exergy and irreversibility.
- To acquire the knowledge of thermodynamic relations and its use.
- To understand the analysis of powers cycles and refrigeration cycles.
- To understand the concept of gas mixtures and psychrometry.

Prerequisite Courses: Nil

References:

Text Book:

• P.K.Nag, "Basic and Applied Thermodynamics" – Tata McGraw- Hill Pub. Co. Ltd.

• Y. Cengel & Boles, "Thermodynamics – An Engineering Approach", Tata McGraw Hill Publications Reference Books:

- **1.** Roger G.F.C. and Mayhew Y.R., "Engineering Thermodynamics" Pearson Education Ltd., 4th Edition, 1992.
- 2. P K Nag, "Power Plant Engineering" Tata McGraw –Hill Pub. Co. Ltd. 3rd ed., 2008.
- 3. C.P. Arora, "Engineering Thermodynamics", Tata McGraw Hill Publications
- 4. Rayner J. "Basic Engineering Thermodynamics" Addison Wesley, 5th Edition.
- 5. Sonntag R.E., Borgnakkec C. Van Wylen G.J. "Fundamental of thermodynamics", 6th Edition
- 6. P. Chattopadhyay, "Engineering Thermodynamics" Oxford Press

Additional Resources: NPTEL, MIT Video Lectures, Web resources etc.

Course Outcomes (COs): On completion of this course, the students will be:

CO1	Able to understand the fundamentals of thermodynamics and its Laws.		
CO2	Able to identify and describe energy exchange processes with their effectiveness		
CO3	Able to understand the thermodynamic relations and its application to various systems.		
CO4	Able to understand introductory concept of gas power cycles and calculate the performance		
	parameters e.g. efficiencies, coefficients of performance etc.		
CO5	Able to understand introductory concept of refrigeration cycles and calculate the performance		
	parameters e.g. coefficients of performance etc. and use the gas mixture & psychometry relations		

Department of Mechanical Mechatronics Engineering

UNITS	COURSE TOPIC	Hours	
UNIT1	INTRODUCTION TO THERMODYNAMICS	6	
	Introduction of thermodynamics, Review of basic definitions, Thermodynamic		
	properties and their units, Zeroth law of thermodynamics, Macro and Microscopic		
	Approach, First law of thermodynamics, Steady flow energy equation and it		
	application to different devices. Limitations of First law, Second Law		
	thermodynamics, Equivalence of Clausius and Kelvin Plank Statement, Entropy		
UNIT 2	ENTROPY, AVAILABILITY AND IRREVERSIBILITY	6	
	Clausius inequality, concept of entropy, entropy change in different processes, Tds		
	equation, principle of increase in entropy, T-S diagram, statement of third law of		
thermodynamics, entropy and disorder, concept of exergy, available and una			
	energy, availability and irreversibility, second law efficiency		
UNIT 3	UNIT 3 THERMODYNAMIC RELATIONS		
	Maxwell's equation, T-ds equations and heat capacities, Energy equation, Joule		
	Kelvin effect, Clapeyron equation.		
UNIT 4	VAPOUR POWER CYCLES	6	
	Properties of pure substances, Rankine cycle, Actual Vapour power cycle and		
	comparison with Carnot cycle, Mean temperature of heat addition, Reheat cycles,		
	Ideal Regenerative cycles, Regenerative cycles, Reheat- Regenerative cycles		
	including feed water heaters, Binary vapour cycles, Process heat and byproduct		
	power		
UNIT 5	BOILERS AND ACCESSORIES	2	
	Classification of boilers, Fire and water tube boilers, Boiler mountings and		
	accessories, Economiser, Superheater & Reheater, Air preheater.		
UNIT 6	GAS POWER CYCLES	4	
	Carnot, Sterling, Erricson, Otto cycle, Diesel cycle, Dual cycle, Comparison of A.S.C.		
UNIT 7	GAS TURBINE AND JET PROPULSION SYSTEM	5	
	Closed cycle, open cycle, Brayton cycle, Effect of Pressure ratio on Brayton cycle,		
	Intercooling, Reheating, and Regeneration, Advantage and disadvantage of GT		
	plants, Analysis of GT plant, closed cycle Gas turbine, Semi-closed cycle GT plant,		
	performance of GT plant, Components of GT plant; Jet propulsion cycle, Rocket		
	propulsion, Turbojet engine, Ramjets and pulsejets		
UNIT 8	REFRIGERATION CYCLES	4	
	Reversed heat engine cycles, Gas cycle refrigeration, Vapour compression cycle,		
	Refrigerants, Absorption cycle		
UNIT 9	GAS MIXTURES AND PSYCHROMETRICS	3	
	Properties of gas mixtures, Basic concept of psychrometry, Psychrometric processes		
	and air conditioning		

Evaluation Methods:

Item	Weightage (%)
Quiz 1	10
Quiz 2	10
Mid-Term exam	30
End Term exam	50

Prepared by: Dr. Kamal Kishore Khatri, Dr. Sandesh Chougule Last Update: 21st July 2017