Department of ELECTRONICS AND COMMUNICATION

The LNM IIT, Jaipur

	Design Lab- II	
Programme: B.Tech. (ECE)	Year: 3 rd	Semester: EVEN
Course:	Credits:	Hours:

Course Context and Overview (100 words): This course helps to simulate and evaluate Bit error rate performance of various modulation schemes over wired/wireless systems. Course covers simulation of various wireless systems using C++ based S-function. It also helps to understand industrial implementation of communication system using System On Chip (SOC) based or DSP processor based implementation.

Prerequisites Courses: Matlab, C, C++, Digital Signal processing, Digital communication, Probability theory.

Course outcomes (COs):

On completion of this course, the students will have the ability to:

CO1 Evaluate BER performance of Wired system.

C02 Explain and analyse Wired and Wireless Bit error rate performance.

C03 **Simulate** M-QAM performance over Wired/Wireless channel using single/Multiple antenna system.

C04 **Simulate** C++ based communication system and S-function based Simulink model. C05 **Realize** Hardware using SOC (System On Chip) in ZED-Board/ZYBO Boards.

Course Topics:

Topics		Lecture Hours	
UNIT – I			
1. BER performance evaluation over wired			
channel.			
1.1 Evaluation of BER performance of BPSK	1		
modulation in AWGN environment.			
1.2 Evaluation of BER performance of M-QAM	1	3	
modulation in AWGN environment.			
1.3 Simulink model based wired system evaluation.	1		
	1		
UNIT – II			
2. BER performance evaluation over wireless			
channel.		3	
2.1 Evaluation of BER performance of BPSK	1		
modulation in Rayleigh environment.	1		

	2.2 Evaluation of BER performance of M-QAM	1	
	2 3 Simulink model based wireless system		
	evaluation.	1	
UNIT	– III		
3.	BER performance evaluation over wireless		
	channel for multiple receiving antenna system.		-
	3.1 Evaluation of BER performance of BPSK	1	
	2.2 Evoluation of DED performance of M. CANA		3
	3.2 Evaluation of BER performance of M-QAM	1	
			-
	avaluation	1	
UNIT	-IV		
4.	C++ based M-OAM modulation and		
	Demodulation over wired/wireless channel.		
	4.1 C++ based QPSK demodulation over	1.5	
	Wired/Wireless channel.	1.5	3
	4.2 C++ based QAM modulation-demodulation over		
	Wired/Wireless channel.	1.5	
UNIT	– V		
5.	Gaussian noise generation and end to end S-		
	5 1 C++ based Gaussian noise generation.	1	2
	5.2.5 function based and to and simulation of	1	3
	wired/wireless system	1	
	5.3 S-function based and to and system BER		-
	nerformance evaluation	1	
UNIT	– VI		
6.	SOC (System on Chip) based Hardware		
	realization of QPSK/M-QAM Transmitter		
	Receiver for Multimedia applications.		
	6.1 Bit stream generation from given multimedia	1	3
	file.	1	
	6.2 Understanding SOC(System on Chip) based	1	
	signal transmission reception.	1	-
	6.3 Implementing Multimedia transmission over	1	
	ZED-Board SOC.	-	
UNIT	– VI		
7.	Project: Simulation(s-function) based /SOC based		
	Hardware implementation/ FPGA based	12	12
	Hardware implementation of communication		
	blocks/ protocols /systems.		
1		1	1

Software : Matlab, C, C++, VHDL

Additional Resources (NPTEL, MIT Video Lectures, Web resources etc.):

Evaluation Methods:

Item	Weightage
In Lab evaluation	40
Project	15
Midterm	15
Final Examination	30

Prepared By: Divyang Rawal, Nikhil Sharma Last Update: 20/02/2019