

Programme:	Course Title:	Course Title: Course Code:									
B. Tech. (ECE)	Digital Circuits	Digital Circuits and Systems ECE214									
Type of Course:	Prerequisites:	Prerequisites: Total Contact									
Program Core	Basic Electronic	Basic Electronics									
Year/Semester: 2/Odd	Lecture Hrs/Week: 3	Tutorial Hrs/Week: 0	Practical Hrs/Week: 0	Credits:							

Learning Objective:

Introduction to the Digital Circuits and Systems (DCS) is towards the aim of designing the fastest growing digital technology systems over given specifications. Some very common and daily life examples of digital systems out of millions are as follows: digital watch, vending machine controller (ATM machine), digital scientific calculator using CORDIC algorithms, washing machine controller (hardware part), digital remote controls, automatic digital locks, digital games, automatic digital control in cars, robots, digital cameras, mobile phones etc. Students will gain the necessary skills to design and implement practical digital systems.

Course outcomes (COs):

On com	On completion of this course, the students will have the ability to:								
CO-1	Understand the basics of number systems, various digital codes and their arithmetic.	2							
CO-2	Analyze the Boolean expressions using Boolean algebra, K maps, VEM and QM method.	4							
CO-3	Analyze combinational circuits including adders, encoder, decoders, multiplexers and complex structures using logic gates	4							
CO-4	Analyze various sequential circuits like latches, flip flops and counter using logic gates.	4							
CO-5	Evaluate different Finite State Machines (FSM).	5							
CO-6	Understand the basic fundamentals of digital system design.	2							

Cour	se Topics	Lecture	CO	
UNIT	「−I (Number Systems & Codes)	5		
1.1 Syste	Positional Number Systems, Octal and Hexadecimal Numbers, Number m Conversions	1		
1.2	Representation of negative numbers, Two's complement arithmetic	2	5	CO1
1.3 EBCI	Codes and arithmetic: Weighted and non-weighted, BCD, XS-3, ASCII, DIC and Gray code	2		

ECE Department, LNMIIT Jaipur	Page 1-4
-------------------------------	-------------------

UNIT – II (Boolean Algebra and Minimization techniques)	5		
2.1 Axioms, up to 6 variable K-map minimization	2	5	CO2
2.2 Duality, Standard representation, combinational circuit minimization using K-Maps, VEM method	2		
2.3 QM method	1		
		.	
UNIT – III (Combinational Circuit Design)	10		
3.1 Introduction to Combinational logic circuit design, various adders, subtractors, array multipliers, array dividers	4	10	CO3
3.2 Combinational design using multiplexers and demultiplexers	3		
3.3 Combinational design using encoders and decoders	3		
UNIT-IV (Sequential circuit Design)	10		
4.1 Basic elements of sequential logic: Latches and flip-flops, Conversions of flip-flops.	3		
4.2 Counters: Asynchronous (ripple), synchronous and synchronous decade counter, Modulus counter, skipping state counter, counter design. Ring counter, Counter applications:	4	10	CO4
4.3 Registers: buffer register, shift register	3		
UNIT-V (Finite State Machines)	6		
5.1 Definition, classification, state machine analysis, excitation table of flip flops	2		
5.2 Designing various synchronous sequential circuits using state machines.		6	CO5
	2		
5.3 Design Problems (Sequence detectors, Vending Machine Controllers etc.)	2		

ECE Department, LN	NMIIT Jaipur Page 2-4

UNIT-VI (Introduction to Digital System design)	4		
6.1 Introduction, type of digital systems, digital systems specification	1		
6.2 Memory and programmable logic – RAM, memory decoding, ROM, PLA, PAL, SPLD	2	4	CO6
6.3 Introduction to practical system design considerations – timing diagrams, static and dynamic hazards	1		
Total = 40			

Textbook references (IEEE format):

Text Book:

- 1. Digital Design, M. Morris Mano 5th edition Pearson Education.
- 2. Digital Systems: Principles and Application by Ronald J. Tocci, Prentice Hall
- 3. Digital design by M. Morris Mano, Prentice Hall.

Reference books:

- 1. *CMOS Digital Circuits: Analysis and Design*, Sung-Mo Kang and Yusuf Leblebici, Tata McGraw Hill.
- 2. Digital Circuits and Design, S. Salivahanan & S. Arivazhagan, Vikas Publication House Pvt. Ltd., 2nd Ed.

Additional Resources (NPTEL, MIT Video Lectures, Web resources etc.):

https://onlinecourses.nptel.ac.in/noc15 ec01

Evaluation Method									
Item	Weightage (%)	CO mapping							
Quiz 1	5	CO1 to CO2							
Quiz 2	5	CO3							
Quiz 3	5	CO4							
Quiz 4	5	CO5 to CO6							
Midterm	30	CO1 to CO3							
Final Examination	50	CO1 to CO6							

ECE Department, LNMIIT Jaipur	Page 3-4
-------------------------------	------------

*Please note, as per the existing institute's attendance policy the student should have a minimum of 75% attendance. Students who fail to attend a minimum of 75% lectures will be debarred from the End Term/Final/Comprehensive examination.

CO and PO Correlation Matrix (for ECE, all programs, same matrix)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1									1	3	1	1
CO2	3	2	2									1	3	1	1
CO3	3	3	3									1	3	1	1
CO4	3	3	3									1	3	1	1
CO5	3	3	3	2								2	3	2	2
CO6	3	2	1									1	3	1	1

Last Updated On: 01/08/2024

Updated By: Dr. Gaurav Chatterjee

Approved By: