The LNMIIT, Jaipur **Electronics and Communication Department Analog Electronics (ECE-111)**

Department: Electronics and Communication Engineering

Department: Electronics and	Communication Engineering	g				Formatted: Left
Subject Code: ECE-111	Course Title: Electronics-II <u>Analog</u> Electronics	Total Contact Hours: 40	L:3	T:0	P:0	
Credits: 03	Pre-requisi	ite: Basic Electronics-I (ECE	E-105)			Formatted: Font: Not Bold
		** $L \rightarrow$ Lectures, $T \rightarrow$ Tuto	rials, P	→ Proje	ects	

Learning Objective:

This course serves as an intermediate analog electronic course. The course offers a comprehensive range of fundamental electronic device and circuit topics. The specific materials relate to analog electronics including diodes, bipolar-junction transistors (BJT), Operational Amplifiers (Op-Amps), basic single and multistage amplifier configurations, and integrated circuits using 555. This course in analog electronics offers analysis and design of analog electronic circuits, both discrete and integrated, required for an electronics engineer.

Course Outcomes (COs):

CO-1	To learn the basics semiconductors and characteristics of PN diodes	
CO-2	To learn different design techniques and practical applications of PN diode	
CO-3	To learn fundamentals and analysis of transistors and design practical amplifiers using it	
CO-4	To learn designing techniques and practical applications of transistors oscillators and Op-Amp	
	filter circuits.	
CO-5	-5 To learn designing techniques and practical applications of 555 times as multivibrators and	
	fundamentals of ADC and DAC.	

Course Topics	Lecture Hours		
Unit-I Fundamentals Of Diode	Total Lectures (08)		
1.1. Basic Concepts: Intrinsic and Extrinsic Semiconductors, Drift and Diffusion Currents, Working of open diode and voltage applied diode circuits. Static and dynamic resistance, Diode's equivalent circuit, Transition and Diffusion capacitance.			
1.2. Diode Characteristics: Volt-Ampere characteristics, temperature dependence of V-I characteristics, Reverse Breakdown, Transient behavior of PN diode.		CO-1	
1.3. Breakdown and other concepts : Zener and Avalanche breakdown, Load-line concept, piecewise linear diode model.	02		
Unit II Diada Cinanita	Tatal	Leatures (05)	
Unit-II Diode Circuits		Lectures (05)	
2.1. Rectifiers: Half-wave rectifier, Full-wave rectifier and Bridge Rectifiers.			
2.2. Signal conditioning circuits: Clipping and clamping circuits.		60.1	
2.3. Special Diodes: Details of Zener Diode, Schottky, Varactor diode, Photo Diodes, and Light Emitting Diodes (LEDs).		CO-1 CO-2	
2.4. Diode Applications: Peak detector, Regulated DC power supply using Zener diode.			

Last Updated: 23-12-2016

The LNMIIT, Jaipur

Page | 1-3

The LNMIIT, Jaipur Electronics and Communication Department Analog Electronics (ECE-111)

Init-III Bipolar Junction Transistors	Total	Lectures (12)	
 3.1. Transistor Fundamentals: NPN & PNP transistors, structure, typical doping, Eber-Moll model of transistor. NPN transistor and its modes of operation, Current components. Current gains: alpha (α) and beta (β). DC load line concept in BJT (V-I characteristics). Operating point (Q point) determination in BJT. 	03		
3.2. Transistor as an amplifier: CE, CB and CC configuration. DC and AC analysis of single stage CE, CC and CB amplifiers.	02		
3.3. Biasing Techniques: Fixed bias (base bias), Collector feedback bias, Fixed bias with emitter resistor (emitter bias), Voltage divider biasing or emitter bias, Voltage divider with AC bypass capacitor.	03	- CO-3	
3.4. Small signal analysis of BJT: Small signal analysis of different biasing circuits using <i>r_e</i> model.	02		
3.5. Multistage Amplifiers: Cascade and Cascode connections, Darlington connections.	02		
Unit-IV Oscillators	Total	Lectures (04)	
4.1. Oscillator concepts and basic circuit: Positive feedback concept, Barkhausen criterion for oscillation.	01		
4.2. Oscillator circuits: Design and analysis of RC Phase shift, Wien bridge oscillator, Hartley, Colpitts, and Crystal Oscillator.	03	- CO-4	
Unit-V Active Filter Circuits Using Op-Amp	Total	Lectures (04)	
5.1. Basics of Filters: Ideal and approximate responses of different filters.	01		
5.2. Filter approximations: Sallen-key topology, Filter designs using Butterworth, Chebyshev, inverse Chebyshev, Elliptical and Bessel approximations.	03	CO-4	
Unit-VI 555 Timer	Total	Lectures (03)	
 6.1.555 Details: 555 Timer internal circuit diagram and design details. 6.2. Multivibrator Circuits: Design and analysis of astable, monostable and bi-stable multivibrators using 555. 	02	CO-5	
6.3. Other 555 circuits: Zero crossing detector, Schmitt trigger.	01		
Unit-VII DAC and ADC	Total	Lectures (04)	
1. D/A converters: DAC characteristics resolution, output input equations, Weighted resistor, R2R network 02		- CO-5	
7.2. A/D converter: ADC characteristics, flash ADC, Dual slope, Successive approximation, Tracking ADC.	0-5		
, , , , , , , , , , , , , , , , , , ,			

Last Updated: 23-12-2016

The LNMIIT, Jaipur

Page | 2-3

Textbook & References Books

Text Books:

1

[1] Principles of Electronics, A.P. Malvino, Tata McGraw Hill

[1] Microelectronic Circuits, A.S. Sedra & K.C. Smith, Oxford

[2][3] Integrated Electronics, Jacob Millman & Christos C. Halkias, Tata McGraw Hill

LNMINSTITUTE The LNM Institute of Information Technology

[3][1] ____Principles of Electronics, A.P. Malvino, Tata McGraw Hill

Reference Books:

[1] *Electronic Devices and Circuit Theory*, Robert Boylestad, Pentice Hall

[2] Circuits, Devices and Systems, R.J Smith & R.C Dorf, John Wiley & Sons

Evaluation Method				
Item	Weightage (%)			
Quiz	10<u>20</u>			
Midterm	30			
Final Examination	50			

Attendance: Students with less than 75% attendance will get a penalty of 1 grade.

Mid Semester Exam: It will have 30% weightage on the overall marks in the course.

End Semester Exam: This exam will have 50% weightage of the overall marks in the course. Each unit in end semester examination will carry weightage proportional to the lecture hours.

Last Updated: 23-12-2016

The LNMIIT, Jaipur