The LNMIIT, Jaipur Dept. of Electronics and Communication Engineering

	Course Title: Semiconductor Devices and Circuits	Total Contact Hours: 40	L: 3	T: 0	P: 0	C: 3		
Pre-requ	uisite: Analog Electronics	Year: 2		Semest	er: Odd			
Type of Course: Program Core								

** L 🛛 Lectures, T 🖓 Tutorials, P 🖓 Practical C 🖓 Credit

Learning Objective:

The objective of this course is to provide an overview of the behavior of carriers and material properties related to electrical behavior, as well as an introduction to semiconductor devices, their characteristics, and biasing of diodes and transistors. In addition, this course also includes the design and analysis of circuits employing diodes, bipolar transistors (BJTs), and field effect transistors (FETs). Moreover, this course also teaches students how to apply semiconductor device concepts to circuit design and analysis, as well as how to apply semiconductor device fundamentals to electronic projects.

Course outcomes (COs):

On completion of this course, the students will have the ability to:					
		Level			
CO-1	Understand the behavior of carriers in terms of drift, diffusion, and mobility and materials properties related to electrical behavior	2			
CO-2	Apply the concepts of transport of the charge carriers in conjunction with drift and diffusion currents such as	3			
CO-3	Analyze the current-voltage (I-V) characteristics of the p-n junction, the diode, and some special function diodes and these diodes' application in electronic circuits				
CO-4	Explain the theory of BJT for gain, base-width modulation, and equivalent circuit modeling and non-ideal effects on the performance of BJT and the methods to reduce its impacts				
CO-5	Demonstrate the operation of a MOSFET and the second-order effects on I-V characteristics of MOS devices	3			

Course Topics	Lecture Hours	СО
UNIT – I: Physics of Semiconductor Devices	09	
1.1 Introduction of fundamentals, evolution, and uniqueness of semiconductor	1	
technology		
1.2 Group-IV, III-V, and II-VI, semiconductor materials and compounds. Basic	1	
fabrication steps		
1.3 Device at thermal and electrical equilibrium, the concept of electrons and	3	CO1
holes, intrinsic/ extrinsic Semiconductors, carrier concentration, effective mass		
fermi level, energy band models, and direct/indirect semiconductors		
1.4 Concept of the excess carriers, generation and recombination, injection level,	4	
doping, lifetime, scattering, mobility, conductivity, scattering, and temperature		
dependency		
UNIT – II: Carrier Transport in Semiconductor	5	CO2
2.1 Analysis of the semiconductor devices	1	

2.2 Drift/diffusion and thermal current							
2.3 Device modeling using basic transport/ continuity equations and various	3						
approximations							

The LNMIIT, Jaipur Dept. of Electronics and Communication Engineering

UNIT – III: Analysis of p-n Junction Diodes and Heterojunction Devices	11	
3.1. Device at equilibrium, diode I-V characteristics, the forward and reverse	5	
bias of the device, and mathematical modeling of full operation of the p-n		
junction		CO3
3.2. Avalanche and Zener breakdown, capacitance modeling	2	COS
3.3. Small-signal equivalent circuit and switching characteristics	2	
3.4. Schottky/ ohmic contacts and other types of the diodes like varactor, LED,	2	
Zener, and Schottky diode		
UNIT-IV: Bipolar Junction Transistor (BJT)	8	
4.1 History, device structures and fabrication, transistor action and	4	
amplification, Common base, and common emitter DC characteristics		CO4
4.2 Breakdown operation, base width modulation, and circuit-level applications	4	
of the transistors		
UNIT-V: Fundamentals of MOSFET	7	
5.1 MOS Junction, MOS capacitance, equivalent resistance, C-V	3	
characteristics, threshold voltage calculation		
5.2 I-V characteristics of the MOSFET and second-order effects like body	3	CO5
effect, channel length modulation, saturation velocity, DBL, GIDL, and		
mobility degradation		
5.3 Differences between a MOSFET and a BJT	1	

Textbook References:

Text Book:

- 1. Ben G. Streetman, Sanjay Kumar Banerjee, Solid State Electronic Devices, Sixth Edition, Prentice Hall (2006).
- 2. Donald A. Neaman, Semiconductor Physics and Devices, Tata McGraw-Hill, 2003 **Reference books:**

1. S. M. Sze, Semiconductor Devices: Physics and Technology, John Wiley and Sons, 1985.

- 2. M.S. Tyagi, Introduction to Semiconductor Materials and Devices, M.S. Tyagi, Wiley India Pvt. Limited, 2008.
- 3. Jasprit Singh, Semiconductor Devices- Basic Principles, John Wiley and Sons Inc., 2001
- 4. Robert F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley Publishing, 1996

Additional Resources: (NPTEL, MIT Video Lectures, Web resources etc.)

The LNMIIT, Jaipur Department of Electronics and Communication

Item	Weightage (%)	Exam duration (min)	Associated COs	
CLA 1	10	90	CO1	
CLA 2	10		CO2	
CLA 3	10		CO3	
CLA 4	10		CO4	
Midterm	20	90	CO1, CO2, CO3	
Final Examination	40	180	C01-C05	

*Please note, as per the existing institute's attendance policy the student should have a minimum of 75% attendance. Students who fail to attend a minimum of 75% of lectures will be debarred from the End Term/Final/Comprehensive examination.

CO and PO Correlation Matrix for B.Tech with ECE

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1										1	1	
CO2	3	3	2										2	2	1
CO3	3	3	3										3	3	1
CO4	3	3	3										3	3	1
CO5	3	3	2										2	2	1
CO6	3	3	3										3	3	1

Last Updated On:

Updated By: HARSHVARDHAN KUMAR

Approved By:

P a g e | 2-3

ECE Department, The LNMIIT Jaipur