CSE4041/CSE6021: Functional and Non-Functional Testing

Programme: B.Tech (CSE)Year : FinalSemester : EighthCourse: Program ElectiveCredits : 4Hours : 40 hours Theory

Course Context and Overview (100 words):

Industry demands efficient software coders and testers as well. Software is needed to be verified and validated. This course will cover majority of software testing techniques and a mini project to get the actual feel of the same.

Prerequisites Courses: Software Engineering

Course outcomes(COs):

The O	utcomes of this Course are	Correlates to Program outcomes			
CO1:	To understand various test processes and continuous quality improvement	PO2, PO5, PO7			
CO2:	To identify Types of errors and fault	PO 1, PO3, PO4, PO7			
CO3:	Combinatorial test generation	PO1			
CO4:	The use of various test tools	PO2, PO11, PO4, PO12			
CO5:	Application of software testing techniques in commercial environments	PO3, PO4, PO6, PO8			

Course Topics

	Lecture Hours		
UNIT – 1			
1.1	Software Development Life Cycle Models	1	7
1.2	Software Quality	1	

1.3 Requirements	2					
1.4 Behaviours and correctness	1					
1.5 Principles of Testing	1					
1.6 Verification vs Validation; Testing and Debugging	1					
UNIT –2 Types of Testing						
2.1 White Box Testing – Unit, Interface and Integration Testing	6	13				
2.2 Black Box Testing System Level Functional Testing; User Acceptance Testing; Performance Testing; Regression Testing; Internationalization Testing; Security Testing; Ad hoc Testing;	7					
3 UNIT-3 4 Test Management and Automation						
3.1 Test planning; Test Management; Test Process; Test Reporting	2					
3.2 Test Automation; Need for Automation; Selecting a Test Tool; Requirements for Test Tool;	3	5				
UNIT-4 Test Generation						
4.1 Manual Software Test Case and Test Data and Test Bed Generation Strategies; Structures for Testing Teams;	3	6				
4.2 Automated tools for test coverage, test case and test ata generation 3						
4 UNIT-5 Test Metrics						
5.1 Software Test Coverage Metrics	3					
5.2 Reliability Metrics; Project Metrics; Progress Metrics; Productivity Metrics	2	9				
5.3 Testing Web-based Software Applications; Testing Embedded Software Applications	2					
5.4 Software Test Effort Estimation Techniques: FTP based techniques;	2					

Selected subset of Program Outcomes for this Course and its relevance with COs:

SCI	Program Outcomes for this Course and its relevance with COs:									
1	An ability to apply knowledge of mathematics, sciences and engineering in addressing									
	business, scientific and social problems of the society									
Zno [*]	wledge of basic mathematics, computers and science help students in solving and analyzing									
	given testing problem.									
2	An ability to analyze a problem, and identify and define the computing requirements									
	appropriate to its solution.									
	s course includes project where students identify a problem and provide solution for the									
sam	An ability to design, implement, experiment, and evaluate a computer-based system,									
3										
	process, component, or program to meet desired needs									
Tes	t beds are designed, analyzed and implemented using tools and various scripting languages									
	he students									
4	An ability to identify, formulate, and solve engineering problems									
Sor	ne of the real world problems are based on engineering applications									
5	An ability to apply mathematical foundations, algorithmic principles, and computer									
3										
	science theory in the modeling and design of computer-based systems in a way that									
	demonstrates comprehension of the tradeoffs involved in design choices									
Coı	nplexity of a code and algorithm implemented by the code to be tested									
6	An ability to analyze the local and global impact of computing on individuals,									
	organizations, and society									
Stu	dents analyze the issues of a bug carrying software and its impact on society or the end users.									
7	An ability to use current techniques, skills, and engineering tools necessary for									
	computing practice									
The	course teaches the ;attest tools and techniques for testing softwares									
8	An understanding of professional, ethical, financial, and social issues and									
	responsibilities									
	s course does not deal with the above issues									
9	An ability to function effectively, as a member or leader, in multidisciplinary teams to									
	accomplish a common goal									
- TOI •	accomplish a common goal s course has a project component where a group works for a common goal.									

An ability to communicate effectively by oral, written, and graphical means with a range of audiences

This course does not deal with the above issues

An ability to independently acquire and apply required information, and an appreciation of the associated process of life-long learning

This course does not deal with the above issues

12 A knowledge of contemporary issues of computing and engineering

This course includes the developments in testing which are the demand of real world.

Course Outcomes, PO Levels, Instructional Methods, Knowledge Categories:

Instructional Methods:

M1 - Lecture interspersed with discussions
M2 - Lecture with a quiz
M3 - Tutorial
M4 - Laboratory
M5 - Group Discussion
M6 - Group Assignment
M7 - Group Project
M8 - Term Paper/Report
Innovative Delivery Methods/ Technologies
M9 - Promote Active Learning
M10 - Course/ Learning Management System
M11 - Video Lectures (NPTEL, SONET, MIT etc)
M12 - ICT tools

	CO/ Competency	POs - Levels	Instructional		
			Methods		
CO1	To understand various test processes and	12:4	M2		
	continuous quality improvement				
CO2	To identify Types of errors and fault	1:3			
		2:3	M2, M3		
		8:4			
CO3	Combinatorial test generation	1:3	M7, M8		
		2:4			
		3:2			
		6:3			
CO4	The use of various test tools	7:4	M1		
CO5	Application of software testing techniques in	4:5	M12		
	commercial environments				

CO/ Competency – PO Matrix:

Relationship of Course Learning Outcomes to Computer Science & Engineering Program outcomes

Comp.	PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1												4
CO 2	3	3						4				
CO 3	3	4	2			3						
CO 4							4					4
CO 5				5								

Textbook references (IEEE format):

Text Book:

- 1. Patton and Patel, "Software Testing", Pearson Education
- 2. Ron Patton, "Software Testing", Pearson Education
- 3. Aditya P. Mathur, "Foundations of Software Testing", Pearson Education

Reference books:

- 1. M G Limaye, "Software Testing", Tata McGraw-Hill
- 2. Roger S. Pressman, "Software Engineering" A practitioner's approach, 5th Edition, McGraw Hill

Evaluation Methods: Evaluation criteria will be shared by the concerned course instructor.

Attainment of COs: Evaluation Template

Questions are designed to evaluate the attainment of each course outcome.

Table below maps marks of questions asked with COs for the course.