LNMIIT, Jaipur Department of Computer Science & Engineering

Programme:	Course Title:	Course Code:							
B. Tech. (CSE)	Digital Image Prod	CSE 2012							
Type of Course:	Prerequisites:	Total Contact Hours:							
Program Elective	NIL	NIL							
Year/Semester:	Lecture	Tutorial Hrs/Week:	Practical Hrs/Week:	Credits:					
2 nd /4 th	Hrs/Week:	0	0	3					
	3								

Learning Objective

The course aims to provide the students an introduction to the fundamentals of image processing. Concepts of a typical image processing system will be covered including image enhancement, representation, and recognition for application in principal areas. The course aims to develop a foundation for further study and research in this area. The course will augment theory with assignments in MATLAB and OpenCV.

Course outcomes (COs):

On con	Bloom's Level	
CO-1	Understand fundamental concepts of digital image processing	2
CO-2	Understand image enhancement transformations and Apply them in various real life problems	2, 3
CO-3	Understand color image processing and its applications in real life	2
CO-4	Understand and Implement image morphological techniques	2, 3
CO-5	Understand basic concepts of image segmentation and image representation	2
CO-6	Design and Development of image processing-based solutions for various real-world problems	3, 6

Торіс	Lecture Hours				
UNIT – I					
1. Introduction to digital image fundamentals					
1.1 Introduction to digital image processing, applications, Components of	1				
an image processing system					
1.2 Image sensing and acquisition, Sampling, and Quantization	1	4			
1.3 Pixel relationships	1				
1.4 Image operations	1				
UNIT – II					
2. Image Enhancement					

LNMIIT, Jaipur Department of Computer Science & Engineering

2.1 Gray level transformations	1	
2.2 Histogram processing	3	11
2.3 Spatial filtering, Convolution	3	
2.5 Frequency-domain filtering	4	
UNIT – III		
3. Color Image Processing		
3.1 Color models	1	
3.2 Pseudocolor image processing	1	4
3.3 Colour transformations	1	
3.4 Using color in image segmentation	1	
UNIT – IV		
4. Morphological Image Processing		
4.1 Dilation, erosion, opening, closing	3	_
4.2 Hit-or-miss transformation	1	7
4.3 Basic morphological algorithms: Extraction of connected	3	
components, convex hull, skeletons		
UNIT-V		
5. Image Segmentation		
5.1 Point/line/edge detection, Hough transform	3	7
5.2 Thresholding, region-based segmentation	4	
UNIT-VI		
6. Image Pattern Classification		
6.1 Patterns and Pattern Classes	2	7
6.2 Pattern Classification: Prototype matching, deep learning	5	

Textbook references:

Textbook:

1. Rafael C. Gonzalez and Richard E. Woods, *Digital Image Processing*, 4th Edition, Pearson, 2018.

Reference books:

- 2. Anil K. Jain, Fundamentals of Digital Image Processing, Prentice Hall.
- 3. Bernd Janhe, Digital Image Processing, 6th edition, Springer 2005
- 4. Kenneth R. Castleman, Digital Image Processing, 2nd edition, Prentice Hall, 1995.

Evaluation Method						
Item	Weightage (%)					
Quiz 1	15					
Project	15					
Assignment / Viva	10					
Mid Sem	25					
End Sem	35					

LNMIIT, Jaipur Department of Computer Science & Engineering

*Please note, as per the existing institute's attendance policy the student should have a minimum of 75% attendance. Students who fail to attend a minimum of 75% lectures will be debarred from the End Term/Final/Comprehensive examination.

CO and PO Correlation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2											2		
CO2	2	3	2		2						2		2	1	3
CO3	1	1	2		2						1		2	1	3
CO4	2	3	1		2		1				2		2	1	2
CO5	1	2	1		2						2		2	1	2
CO6	3	3	2		2		1				2	1	3	2	3

Last Updated On: 14th January 2021

Updated By: Ram Prakash Sharma

Approved By: