Quantum Condensed Matter Field Theory

Programme: Ph.D. (Physics) Course : Core Course Year: First Credits : 4 Semester : First Hours : 52

Course Context and Overview:

The course is intended to prepare the Ph.D. students with using quantum field theory techniques to study various quantum condensed matter systems in view of the related experimental findings.

Prerequisits:

Quantum Mechanics, Electrodynamics, Statistical Mechanics and Condensed Matter Physics

On completion of this course					
CO1	D1 Students will have technical expertise of using quantum field theory methods in certain condensed matter systems.				
CO2	Students will understand aspects of Broken symmetry and collective phenomena.	2			
CO3	Students will be able to use basic calculational technique of various response functions mesaured in related experiments.	3			
CO4	Students will acquire a basic understanding of renormalization in condensed matter systems.	2			

Course Topics and contact hours allotment:

Topics	Contact Hours
From particles to fields: A case study with classical harmonic chain: phonons, Extension to quantum harmonic chain.	6
Second quantization: Introduction to second quantization, Applications of second quantization.	6
Feynman path integral: The path integral: general formalism, Construction of the path integral, Applications of the Feynman path integral.	6
Functional field integral: Construction of the many-body path integral, Field integral for the quantum partition function, Field theoretical bosonization: a case study.	6
Perturbation theory: General structures and low-order expansions, Ground state energy of the interacting electron gas, Infinite-order expansions.	6

Broken symmetry and collective phenomena: Mean-field theory, Plasma theory of the interacting electron gas, Bose– Einstein condensation and superfluidity, Superconductivity.	8
Response functions: Aspects of modern experimental techniques, Linear response theory, Analytic structure of correlation functions, Electromagnetic linear response.	7
The renormalization group: Ising model, Renormalization group: general theory, RG analysis of the ferromagnetic transition, RG analysis of the nonlinear σ -model, Berezinskii–Kosterlitz–Thouless transition.	7

Textbooks and references:

Text Books:

1. Condensed Matter Field Theory: Alexander Altland and Ben Simons, Cambridge University Press

Reference Books:

1. Methods of Quantum Field Theory in Statistical Physics: A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinski, Dovar Publications

2. Many-Particle Physics, 3rd Edition (Physics of Solids and Liquids) by Gerald D. Mahan , Springer

Evaluation Methods:

Item	Weightage		
Class Presentations	30		
Mid Term	20		
End Term	50		

CO and PO Correlation Matrix

COs	PO1	PO2	PO3	PO4	PSO1	PSO2	PSO3
CO1	3	2		2			
CO2	3	2					
CO3	3			3			
CO4	3			3			

S- Strong; M-Medium; L-Low

Prepared by; Dr. Nabyendu Das Last Updated: 13/01/2023