Thermodynamics and Statistical Mechanics

Programme: M.Sc. Year: 1st Semester: 2nd semester Course: Science Credits: 4 Hours (LTP): 40+12+0

Course Context and Overview (100 words):

The course is designed mainly for second semester M.Sc. physics students. This course reviews basic concepts of the thermodynamics and their application, postulates of statistical mechanics, statistical interpretation of thermodynamics, and theories of various ensembles (microcanonical, canonical and grand canonical ensembles). The course finally provides a flavor of how thermodynamics and statistical mechanics can be used to understand complex systems and related phenomena.

Prerequisites Courses:

Classical mechanics, elementary thermodynamics, basic quantum mechanics, and mathematical physics.

Course Outcomes (COs):

On completion of this course, students will have the ability to do:

CO1: Use the basic concept of thermodynamics to selected problems of physics and related field.

CO2: Acquire the knowledge of statistics and physical principles to describe kinetic theory of gases. Learn Boltzmann transport equation and its applications.

CO3: Use mathematical and physical principles to understand the classical statistical mechanics and learn about the statistical basis of thermodynamics.

CO4: Explain statistical physics and thermodynamics as logical consequences of the postulates of statistical mechanics.

Course Topics:

Topics	Contact Hours (Including Tutorials)	
Unit 1: Basic concepts of thermodynamics	10(L) + 4(T)	
Extensive and intensive variables, Laws of thermodynamics (includes		
Thermodynamic potentials, Entropy, the Maxwell relations, chemical potential),	Highlig	hted parts are
Applications of the thermodynamics to (a) ideal gas, (b) magnetic material, (c)		uch essential for
dielectric material		ompetitive
		like NET, GATE,
		tc. These also
Unit 2: Kinetic theory of gases		s to learn mainly
Key ideas of the kinetic theory, the mean free path, distribution of molecular		cal techniques
velocities in an ideal gas, Maxwell-Boltzmann distribution law, experimental		some extent
verification of the Maxwell's distribution law, Boltzmann Transport equation		nt experimental
	technic	ues.

Unit 3: Formulation of the classical statistical mechanics	7(L) + 15(L) + 6(T)
	+6(T)
Part A: Probability theory, Phase space and quantum states, macroscopic states	
and microscopic states, Liouville's theorem, the statistical basis of	
thermodynamics, classical ideal gas, entropy of mixing and the Gibbs paradox,	
equipartition theorem	
Part B: Elements of ensemble theory: Microcanonical ensemble, canonical]
ensemble, and grand canonical ensemble	
	1

REFERENCES

This course does not follow a particular text book. The following are useful reference books:

- 1. K. Huang, Statistical Mechanics (John Wiley & Sons, 2003).
- 2. R. K. Pathria and P.D. Beale, *Statistical Mechanics* (Elsevier, Third edition, 2011).
- 3. D. Chowdhury and D. Stauffer, *Principles of Equilibrium Statistical Mechanics*, (Wiley-VCH, 2000).
- 4. L. D. Landau and E. M. Lifshitz, Statistical Physics (Part 1. 3rd ed. Pergamon Press, 1980)
- 5. Frederick Reif, ed. Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1965)
- 6. Richard Phillips Feynman, Statistical Mechanics: A set of Lectures (Westview Press, 1998)
- 7. M. W. Zemansky, *Heat and Thermodynamics* (McGraw-Hill Book Company Inc. 1968)
- 8. M. N. Saha and B. N. Srivastava A treatise on Heat: (Science Book Agency, 1967)
- 9. Carl S. Helrich Modern Thermodynamics with Statistical Mechanics, 2009, Springer.
- 10., S. J. Blundell and K. M. Blundell, *Concepts in Thermal Physics*, 2nd Ed., 2012, Oxford University Press.

Additional Resources (NPTEL, MIT Video Lectures, Web resources etc.)