MTH6012: Algebra

Programme: M.Sc. Course: Year: IST Credits: 4 Semester: Even Hours: 40

Course Context and Overview (100 words):

Student will learn the basic concepts of Abstract Algebra which are used in many engineering discipline.

Prerequisites Courses: No

Course outcomes (COs):

On completion of this course, the students will have the ability to:

CO1: Demonstrate factual knowledge including the mathematical notation and terminology used in this course.

C02: Describe the fundamental principles including the laws and theorems arising from the concepts covered in this course.

C03: Apply course material along with techniques and procedures covered in this course to solve problems.

C04: Develop specific skills, competencies and thought processes sufficient to support further study or work in this or related fields.

Course Topics:

Topics	Lecture Hours	
UNIT - I		
Groups :		
Binary operation and its properties, Definition of		
a group, Examples and basic properties.		
Subgroups, Cyclic groups, Dihedral Groups,	1.5	
Permutation, Cayley's theorems. Coset of a	15	
subgroup, Equivalence classes, Lagrange's		
theorem, Order of a group, Normal subgroups,		
Quotient group, Center of Group, Cauchy's		
Theorems, Normalizer. Solvable group.		
UNIT – II		
Homeomorphism and Sylow's Theorems :		
Homeomorphisms, Kernel Image of a	5	
homomorphism, Isomorphism theorems, Direct	5	
product of groups, Sylow' theorems and		
applications.		

UNIT - III	
Rings: Definition, Examples and basic properties. Zero divisors, Integral domains. Characteristic of a ring, Quotient field of an integral domain. Subrings, Ideals, Quotient rings, Ring of polynomials. Irreducibility of Polynomials, UFD, Euclidean Ring, Prime ideal, Maximal ideals.	12
UNIT – IV Field: Basic of Field, Field Extension, Splitting Field, Finite Field, Galois Theory.	8

Textbooks (IEEE format):

1. J. Gallian, Contemporary Abstract Algebra, 4th edition, Narosa, 2009.

References Books

- 1. E. Artin, Algebra, Prentice-Hall of India.
- 2. I.N. Herstein, Topics in Algebra, Wiley, 2008.
- 4 J. B. Fraleigh, A First Course in Abstract Algebra, Pearson, 2003.

Additional Resources (NPTEL, MIT Video Lectures, Web resources etc.):

Evaluation Methods:

Item	Weightage
Attendance	20.0/
Two Quizzes	20 %
Midterm	30 %
ESE	50 %

Prepared By: Dr. Manish Garg **Last Update:** July 2019