MME 4151: Optimization Techniques

Designed for: B. Tech Semester: Odd Year: Fourth Course: Open elective Credits: 3.0 Hours: 40

Course context and overview:

In an Industry, engineers are always are always ask to lower the production cost to withstand global competition. This ever-increasing demand on engineers encourage them to look for rigorous methods of decision making such as optimization methods, to design and produce products and systems both economically and efficiently. Optimization techniques are being used in a wide spectrum of industries, including aerospace, automotive, chemical, electrical, construction, and manufacturing industries. The objective of this course is to understand the optimization methods developed for solving various types of optimization problems. This course will develop and promote research interest in applying optimization techniques in problems of Engineering and Technology.

Prerequisites Courses: M1

Course Outcomes (COs):

After successful completion of the course, students will be able to	
CO1: Understand the basic principle of optimization and formulate the	Unit 1
optimization problems	
CO2: Understand the classical and traditional optimization techniques	Unit 2
CO3: Apply mathematical techniques to solve optimization problems	Unit 3
CO4: Develop and formulate optimization problems from the data and	Unit 4 and
description available from the real-life engineering problems	Unit 5

Text Books:

- 1. Singiresu S. Rao, Engineering Optimization-Theory and Practice, Published by John Wiley & Sons, Inc., Hoboken, New Jersey
- 2. Kalyanmoy deb, Optimization for Engineering Design: Algorithms and Examples, PHI Learning Pvt. Ltd

Reference books:

1. L. R. Foulds, Optimization Techniques: An Introduction, Springer publication

Additional Resources: NPTEL, MIT Video Lectures, Web resources etc.

UNITS	COURSE TOPIC	Lecture	Student
UNIT 1	Introduction to optimization	Hours 6	Development
	Introduction, Statement of an optimization problems: Design vector, Design constraints and surface, objective function and surface	2	Employability and Skill Development
	Classification of optimization problems: Based on constraints, nature and permissible values of design variables, physical structure of the problem, nature of equations involved, deterministic nature of variables, separability of functions, number of objective functions.	4	
UNIT 2	Classical Optimization Techniques	8	
	Single Variable Optimization,		Employability
	Multivariable Optimization with no Constraints: Semidefinite case, saddle point	2	and Skill Development
	Multivariable Optimization with Equality Constraints: Solution by direct substitution, method of constrained	4	
	variation, Method of Lagrange multipliers Multivariable Optimization with Inequality Constraints:	2	

	Kuhn-Tucker conditions, constraint qualification		
UNIT 3	Unconstrained and Constrained Optimization	12	
3	Techniques		
	One dimensional Minimization methods: Unimodal		Employability
	function, Exhaustive Search, Fibonacci Method, Golden	4	and Skill Development
	Section method, Interpolation Methods	4	
	Direct search methods: Random search methods, Pattern	4	
	and Grid Search Methods, Powell's method.	_	
	Indirect Search Methods: Steepest descent Methods,	4	
	Conjugate Gradient Method, Penalty Function Method,		
UNIT 4	Optimal Control and Optimality Criterion Methods	8	
	Introduction,		Employability and Skill Development
	Calculus of variations: Introduction, Problems of calculus	3	
	of variations, Lagrange multipliers and constraints	J	
	Optimal Control Theory: Necessary conditions for optimal	3	
	control and general problem		
	Optimality criteria methods: With single and multiple	2	
	displacement constraints	_	
UNIT 5	Modern methods of Optimization Techniques	6	
	Introduction to advanced optimization techniques:		Employability
	Genetic Algorithms: Introduction, Representation of design	4	and Skill Development
	variables, objective function and constraints, Genetic		
	operators	2	
	Simulated Annealing, Particle swarm optimization, Ant	_	
	colony optimization, optimization of fuzzy systems,		
	Neural-network-based optimization.		

Evaluation Methods:

Evaluation criteria will be shared by the concerned course instructor.

Prepared By: Dr. Servesh Kumar Agnihotri

Last Update: 19/07/2020