The LNMIIT, Jaipur Department of Mechanical & Mechatronics Engineering Modeling and Design of Robots

Subject Code:	Course Title: Modeling And Design of Robots	Total Contact Hours: 40	L: 3	T: 0	P: 2	C: 4
Pre-requisite:] automation	Basic Electronics, Introduction to	Year: 2		Semest	er: Ever	1
Type of Cours	e: Hons./Minor Program					

** L @Lectures, T @Tutorials, P @Practical C @Credit

Learning Objective:

This is a Hons./Minor programme course offered to 2nd year engineering students. It covers the study of kinematics and dynamics of both manipulators and mobile robots. This course presents an introduction to the fundamentals of manipulators and mobile robotics, spanning the mechanical, motor, sensory, perceptual and cognitive layers that comprise this field of study. One unit is also covering the robot vision, image processing and navigation techniques to make them completely autonomous. Practical knowledge on study of kinematics and dynamics of robot on MATLAB, LABVIEW, ATMEL and other such software will be given so that students can do synergistic integration of mechanics, electronics, control theory, and computer science within a robotics system, in order to improve and/or optimize its functionality.

Course outcomes (COs):

On com	Bloom's Level	
CO1	Understand the basics of manipulator, mobile robots, end-effectors	2
CO2	Model forward and inverse kinematics of robots	3
CO3	Decide robot perception and navigation algorithms	5
CO4	Build and program robots using sensors	6

Course Topics:

S. No.	Contents	Hours	СО					
	Manipulators and End Effectors: Types of Manipulators,		CO1					
1	Manipulator Drive Systems, Manipulator Control Systems, Types of	2						
	end effectors, Grippers, Gripper joints, Gripper force.							
	Kinematics and Dynamics: Links & Linkage design, 3D stress &		CO2					
	strain analysis of links and linkage mechanism. Basics of theory of							
	machines, Manipulators Kinematics, Rotation Matrix, Homogenous							
2	Transformation Matrix, Direct and Inverse Kinematics for industrial	21						
	robots for Position and orientation. Motion generation, Manipulator							
	dynamics, Jacobean in terms of D-H matrices. Differential Kinematics							
	and Static-Dynamics-Lagrangian Formulation.							

The LNMIIT, Jaipur Department of Mechanical & Mechatronics Engineering Modeling and Design of Robots

	Mobile Robot: Introduction, wheeled mobile robots and their kinematics, humanoid robots.		
3	Trajectory Planning: Terminology, Joint Space Techniques, Cartesian Space Techniques, Comparison	4	CO4
4	Control Architecture: position, path velocity and force control systems, computed torque control, adaptive control, and Servo system for robot control	3	CO4
5	Perception, Navigation and Simulation: Introduction to robot perception, Feature extraction, Image acquisition, representation and processing. Introduction to localization, obstacle avoidance and navigation, Simulation.	8	CO3
6	Application of Robots: Application of robot in welding, machine tools, material handling, and assembly operations parts sorting and parts inspection.	1	CO1

S. No.	Name of Lab Experiment	Hours	СО
1	Introductory Lab	2	CO1
2	Study and analysis of inverted pendulum	2	CO2
3	Study of kinematics of manipulators	2	CO2
4	Design and Analysis of Manipulators on CAD	2	CO2
5	Programming of 5-DoF Robotic Arm	2	CO4
6	Fabrication and programming of basic RC mobile robots	2	CO4
7	Study of kinematics of sbRIO Mobile Robot (Turning &	2	CO2
	Rotating)		
8	Design a suitable algorithm on LabVIEW for obstacle avoidance	2	CO3
	using sbRIO mobile Robot		
9	Embedded C programming of firebird V robots	2	CO4
10	Study of open and closed loop motor control of Mobile Robot	2	CO3
11	Programming of a humanoid robot for different applications	2	CO4
12	Project	4	CO1, CO2,
			CO3, CO4

Textbook References: Text Book:

The LNMIIT, Jaipur Department of Mechanical & Mechatronics Engineering Modeling and Design of Robots

1. John Craig, *Introduction to Robotics: Mechanics and Control*, Pearson/Prentice Hall Education, 3rd Edition, 2005

2. R. Siegwart, *et.al Introduction to Autonomous Mobile Robots*, Prentice Hall of India, 3rd Edition, 2005.

3. Mittal, R. K., and I. J. Nagrath. *Robotics and control*. Tata McGraw-Hill, 2003.

Reference books:

1. Richard D. Klafter, *Robotics Engineering, An Integrated approach*, Prentice Hall of India, 3rd Edition, 2003.

2. Fu K S, Gomalez R C and Lee C S G, *Robotics: Control, Sensing, Vision and Intelligence*, McGraw Hill Book Company, 1st Edition, 1987.

3. Groover, Mikell P., et al. *Industrial robotics: technology, programming, and applications.* McGraw-Hill, 2012.

Additional Resources:

NPTEL, MIT Video Lectures, Web Resources etc.

Evaluation Method								
Item	Weightage	CO						
Quiz 1	5%	CO1, CO2						
Quiz 2	5%	CO3, CO4						
Assignment	5%	CO1, CO2, CO3						
Project Evaluation	5%	CO1, CO2, CO3, CO4						
Lab Report	5%	CO1, CO2, CO3, CO4						
Lab Exam	15%	CO1, CO2, CO3, CO4						
Mid term	20%	CO1, CO2						
End term	40%	CO1, CO2, CO3, CO4						

CO and PO Correlation Matrix

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	-	-	-	-	-	-	-	-	1
CO2	3	3	1	-	-	-	-	-	-	-	-	1
CO3	3	2	3	-	-	-	-	-	-	-	-	1
CO4	3	3	3	-	-	2	-	-	-	-	-	1

Last Update:16/01/2024 Updated by: Atul Mishra