MME 312 L: Machine Design2 Lab

Programme: B.Tech. (MME) Year: 3rd Semester: V sem, ODD Course:Core Credits:1 Hours: 2 / week

Course Context and Overview (100 words):

The objective of the design labare to provide the knowledge to the students in the field of design of machine components. This will help the students for designing and analysing the structural components as per the customer or client requirements. The further detailed objectives are as following:

- 1. To understand the basic concepts of machine design.
- 2. To understand the application of static and fatigue load.
- 3. To learn the various types of analytical approach used for designing structural components or assemblies.
- 4. To learn the working principle, applications and design criteria.

Prerequisites Courses:Nil

(Course name and course code)

Course outcomes (Cos):

On completion of these experiments, the students will have the ability to:	
CO1 Understand the design approach of beam under static load.	Exp1
C02 Understand the design concept of machine components using different failure criteria.	All Exp.
C03Understand the design concept of shaft using Von-Mises theory.	Exp-3, Exp-6
C04 Understand the design approach of beam based of structures.	Exp1
C05 Understand the basic design approach machine component subjected to fatigue load.	Exp2, Exp3
C06Understand the cumulative fatigue design approach of machine components.	Exp2, Exp3
C07 Understand the concept of modal analysis.	Exp-7, Exp-8

C08 Understand the design approach of transient and impact load.	Exp9, Exp10
C09 Understand the design approach of spur gear.	Exp4
C10 Understand the design approach of helical gear.	Exp5

List of Experiments:

S. No.	Experiments	Hour	Student
		S	developemen
1	Structural static analysis of a simply supported	3	Skill
_	Structural static analysis of a simply supported I-section beam of 2 m long for different types of	3	developemen
	load. Take E=210GPA and poission's ratio = 0.3		t
	(1) vertical point load of 4 KN at center (2) UDL of		
	10KN/m (3) Moment 10KN-M		
2	Fatigue analysis of a rectangular plate with a hole	3	<mark>Skill</mark>
	using Ansys Workbench		<mark>development</mark>
3	Fatigue Analysis of a shaft subjected to	3	Skill
	fluctuating torque on ansys workbench.		<mark>development</mark>
4	Structural static analysis of a "GEAR ASSEMBLY	3	Skill Skill
	with and without shaft" in ANSYS Workbench		development &
			Employability
5	Structural Static Analysis of a Helical Gear	3	Skill
			development
6	Rigid dynamics analysis of rotating shaft using	3	<mark>Skill</mark> development
	ansys workbench		-
7	Modal dynamics analysis of Cantilever using ansys	3	Skill
	workbench		<mark>development</mark>
8	Modal dynamics analysis of Plate using ansys	3	Skill
	workbench		<mark>development</mark>
9	Transient analysis of Plate using ansys workbench	3	Skill
			<u>development</u>

10	Explicit analysis of plate using ansys workbench	3	Employability

Textbook references (IEEE format):

Text Book:

- 1. Bhandari V B, "Design of Machine Elements", 3rd ed., McGraw-Hill.
- **2.** Norton L. Robert., "Machine Designan Integrated Approach" 2nd ed., Pearson.

Reference books:

- 1. Shigley'set al., "Mechanical Engineering Design" 9th ed., McGraw-Hill.
- **2.** Jindal U. C., "Machine Design", Pearson.

Additional Resources (NPTEL, MIT Video Lectures, Web resources etc.):

Evaluation Methods:

Item	Weightag
	e
Attendance	10
Lab Assessment	20
Practical File	30
Final Examination (Experiment and Viva voce)	40

Prepared By: Dr. Vikas Sharma