The LNMIIT, Jaipur Department of Mechanical-Mechatronics Engineering

Subject Code: MME-3062	Course Title: Smart Materials for Instrumentation	Total Contact Hours: 40	L: 3	T: 0	P: 0	C: 3			
Pre-requisite:		Year: 3	Semester: Even						
Type of Course: Other Elective (OE)									

** L 🛮 Lectures, T 🖟 Tutorials, P 🖟 Practical C 🖟 Credit

Learning Objective:

This course is designed as an elective course for undergraduate students of engineering who are in their 3rd year. The content of this course covers basics of different smart materials, their potential use in development of instrumentation. This course is also useful in helping students to learn the use of smart materials to automate the different tasks at micro/nano level workspace and to develop micro/nano mechatronics system.

Course outcomes (COs):

On con	Bloom's level	
CO1	Recognize and Understand the fundamental concepts of smart	2
	materials and smart materials based MEMS. Creation of Smart	
	MEMS applications.	
CO2	Understand and Analyze the behavior of piezoelectric materials	4
	and their response.	
CO3	Understand and Analyze the behavior of piezoresistive materials	4
	and their response.	
CO4	Understand and Analyze the behavior of magneto-strictive	4
	materials and their response.	
CO5	Understand and Analyze the behavior of shape memory alloy and	4
	their response.	
CO6	Understand and Analyze the behavior of Active Smart Polymers	4
	inclusive of electroactive polymers and their response.	

Course Topics:

Topics	Lecture Hours	CO
UNIT - I Introduction: Smart Materials definition and applications, smart systems using smart materials, actuators Smart Materials based MEMS: Electrodes Configuration, Design Issues, Pyroelectricity, Intelligent MEMS devices based on Smart Materials Smart MEMS Applications: Sensors developed, MEMS device for motion and accelerometers, MEMS Application, Crystal Growth Processes, MEMS Development, Processing Techniques	10	CO1,
Unit – II Piezoelectric Material: History of piezoelectricity, materials for Piezoelectric effect, Development of Piezoelectric Devices,	06	CO2

The LNMIIT, Jaipur Department of Mechanical-Mechatronics Engineering

Piezoelectric Actuator, Bimorph, Piezostacks, Modeling of the		
Piezoelectric Devices		
Unit - III		
Piezoresistive Material: Piezoresistivity, Applications of	06	
Piezoresistive Devices, Design, modeling and development of		CO-3
Piezoresistive Devices		
Unit - V		CO4
Magnetostrictive Polymer: Magnetostrictive Principle,	06	
Magnetostrictive Materials and their history, Different		
Magnetostrictive effects, Applications of Magnetostrictive Material		
Unit - V		CO5
Shape Memory Alloys: Shape Memory Effect (SME), Alloys with	06	
SME, One-Way SME, Pseudoelasticity, Two-way SME, Application of		
SMA		
Unit - V		CO6
Active Smart Polymer: Active Smart Polymers, Classification of	06	
Electro-active Polymers, Design and development of Electro-active		
polymeric devices, Applications		

Textbook References:

Text Book:

- 1. Inderjit Chopra and Jayant Sirohi, Smart Structures Theory, Cambridge Press
- 2. V.K. Varadan, K.J. Vinay, and S. Gopalakrishnan, Smart Materials Systems and MEMS Design and Development Methodologies, John Wiley and Sons

Reference books:

1. Ralph C. Smith, *Smart Material Systems: Model Development, Frontier in Applied Mathematics* .

Additional Resources:

NPTEL, MIT Video Lectures, Web resources etc.

Evaluation Method								
Item Marks								
Assignment cum Quiz	30	CO1, CO2, CO3, CO4, CO5, CO6						
Midsem	30	CO2, CO3, CO4						
EndSem	40	CO1, CO2, CO3, CO4, CO5, CO6						

CO and PO Correlation Matrix

CO	PO	PO1	PO1	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	2	2	2	-	-	-	-	-	-	2			
CO2	3	3	3	2	3	-	-	-	-	-	-	2			
CO3	3	3	3	2	3	-	-	-	-	-	-	2			
CO4	3	3	3	2	2	-	-	-	-	-	-	2			

Prepared By: Dr. Vikas Sharma Last Update: 21/02/2023

The LNMIIT, Jaipur Department of Mechanical-Mechatronics Engineering

Approved By: