Department of MME The LNMIIT, Jaipur

MME 305: CAD/CAM

Programme: B.Tech. (ME) Year: 3rd Semester: Odd Course : Core Credits : 3 Hours :40

Course Context and Overview (100 words):

This is a compulsory course offered to the third year students of MME department. The objective of the course is to provide the students with basic knowledge of the CAD/CAM systems such as computer graphics, NC/CNC machines and rapid prototyping etc. Basic principles, operation features and characteristics of various CAD/CAM systems are covered.

Prerequisites Courses:

(Course name and course code) NIL

Course outcomes (COs):

On completion of this course, the students will have the ability to:	
CO1: Demonstrate the applications and benefits of computer aided design.	Unit 1
C02: Demonstrate various concepts of geometric modeling.	Unit 2
C03: Demonstrate the knowledge of computer aided manufacturing.	Unit 3
C04: The student would have gained basic knowledge in CIM and rapid prototyping.	Unit 4

Course Topics:

Topics		Lecture Hours	Student development
UNIT - I 1. Topic: Introduction to CAD/CAM			Employability and Skill Development
1.1 Introduction to CAD/CAM, Historical Developments and Future trends, Necessity of CAD, Product life cycle.	1		
1.2 CAD / CAM Hardware, Basic structure, CPU, Memory types, input devices, display devices, storage devices.	1	11	
1.3 Introduction to Graphic standards, Output primitives- Line drawing algorithm and Circle generating algorithm,	1		
1.4 World/device Coordinate Representation, Windowing and clipping.	2		

1.5 Geometric Transformations: 2 D Geometric transformations-Translation, Scaling, Shearing, Rotation &	1		
Reflection Matrix representation,			
1.6 Composite transformation, 3 D transformations,	2		
multiple transformation.	3		
1.7 Introduction to Engineering drawings of mechanical			
components such as threaded fasteners, keys, cotters, shaft	2		
couplings etc.			
UNIT - II			Employability
2. Topic: Geometric modeling			and Skill Development
2.1 Curves representation, Interpolation vs approximation,			Development
parametric representation of analytic curves such as	2		
Spline curve, Bezier curve, Continuity conditions.			
2.2 Polygon surfaces, Quadric and Super quadric surfaces,	2	8	
blobby objects and Fractals	<u> </u>	U	
2.3 Fundamentals of Solid modeling-Set theory, Boundary			
representation, Constructive solid geometry, Sweep	3		
representation, Color models, Application commands	3		
for AutoCAD & Solid works software.			
2.4 Introduction to finite element method	1		
UNIT - III			Employability
3. Topic: Introduction to CAM			and Skill
3.1 Automated Manufacturing systems, Need of			Development
automation, Basic elements of automation, Levels of	1		
automation, Automation Strategies			
3.2 Historical development and future trends. Fundamental	2		
of Numerical Control, elements of NC machine tools,	2		
3.3 Classification of NC machine tools, Advantages,	1		
suitability and limitations of NC machine tools,	1		
3.4 DNC, CNC, Robots, Adaptive control.	2		
3.5 CNC machines and tooling: Vertical machining center,		13	
horizontal machining center, universal machining center, Controls	1		
and interpolators, Sensors.	1		
- 1			
3.6 CNC Part Programming: Manual part programming (in			
word address format) with examples of Drilling, Turning and	3		
Milling,	3		
3.7 Computer aided part programming using APT language,			
Geometry, Motion and Additional statements.	3		
200			
UNIT - IV			Employability
4. Computer integrated manufacturing systems		8	
4.1 Computer aided process planning, Group Technology	2		
		1	

4.2 Cellular manufacturing, Flexible Manufacturing System, CIM,	2	
4.3 Computer aided Inspection, Material handling and storage system, transfer lines	2	
4.4 Rapid prototyping.	2	

Textbook references (IEEE format):

- 1. Hearn & Baker, Computer Graphics, Prentice Hall of India, 2009.
- 2. MP Groover & EW Zimmers, Jr. CAD/CAM, Prentice Hall India Ltd, 1984.
- 3. MP Groover, Automation, production systems and computer-integrated manufacturing, Prentice Hall India Ltd, 1998.
- 4. Tirupathi R. Chandrupatla, *Introduction to finite elements in engineering*, Prentice Hall, 2015
- 5. Yoram Koren, Computer control of manufacturing systems, Tata McGraw-Hill, 2009.

Reference books

- 1. DF Rogers & JA Adams, *Mathematical Elements for Computer Graphics*, Tata McGraw-Hill, 1999
- 2. Ibrahim Zeid & R Sivasubramaniam, CAD/CAM Theory and Practice, McGraw Hill, 2013.
- 3. J.N. Reddy, An Introduction to finite element method, McGraw Hill, 2001.
- 4. Farid Amirouche, *Principles of Computer Aided Design and Manufacturing*, Pearson Education, 1996
- 5. J Srinivas, CAD/CAM: Principles and Applications, Oxford University Press, 2017

Evaluation Methods:

Item	Weightage
Midterm exam	30
Teacher's assessment (Assignment, Presentation, Project, Quiz, Attendance etc)	20
End term	50

Prepared By: Vikram Sharma Last Update: 4th-April-2019