MME303: FINITE ELEMENT METHOD

Programme: B. Tech. (MME)	Year: Third	Semester: VI Sem.
Course : Core	Credits : 3	Hours : 40

Course Context and Overview (100 words):

The objective of the course is to provide the knowledge to the students in the field of structural analysis of machine components using Finite Element Method (FEM). This will help the students for designing and analysing the structural components as per client requirements. The further detailed objectives are as following:

- 1. To understand the basic concepts of FEM
- 2. To understand the application of FEM
- 3. To learn the various types of analytical approach used for designing structural components or assemblies.
- 4. To learn the working principle, applications and design criteria.

Prerequisites Courses: Nil

(Course name and course code)

Course outcomes (Cos):

On completion of this course, the students will have the ability to:	
CO1 To understand the basic of Finite Element Method (FEM)	
C02 To understand the analysing the machine components using one dimensional element	
C03 To understand the type of elements used in FEM	
C04 To understand the analysing the machine components using two dimensional element	
CO5 To understand the application of FEM in Structural Dynamics	

-

Course Topics:

				Stud ent achie veme
	Finite Element Method		I	nt
S.	Tonics	L	Hour	
No.	Topics Unit-1: Fundamental Concepts		S	
	Introduction, Plane Stress, Plane Strain, Design Process, Advantage of Finite			
	Element analysis in Design, Computer Aided Stress Analysis Technique,			
	Different Type of Analysis, Idealization using one dimensional, two			
	dimensional, and three dimensional Element, Mesh refinement, Different			
	analysis packages, Introduction to the stiffness (Displacement) method,			Empl
	Stiffness matrix for Spring Element, Direct Stiffness Method, Potential			oyabi
1	Energy Approach to Derive Spring Element Equations, Examples	8	8	lity
	Unit-2: One Dimensional Problem			
	Introduction, Steps used in Finite Element Modeling, Intrinsic Coordinate,			
	Shape Function, Iso-parametric Element, The Potential-Energy Approach,			
	Minimum Potential Energy Approach, Element Stiffness Matrix, Force			
	Matrix, The Galekerian Approach, Assembly of stiffness matrix, Properties			Empl
	of Global Stiffness Matrix, Boundary Condition, Penalty Approach, Multi			oyabi
2	Point Constraints, Quadratic shape functions, Temperature Effects, Examples	11	11	lity
				<mark>Empl</mark>
	Unit-3: Trusses and Element Types			<mark>oyabi</mark>
	Introduction, Plane stress, Local and Coordinate Systems, Formulation for			lity &
	direction cosine, Element stiffness matrix, Global Stiffness Matrix, Stress			a Skill
	Calculation, Three Dimensional Truss, Examples			devel
	Type of Elements (1D, 2D, 3D), Higher Order Elements Element, Special			opme
3	Type of Elements, Examples	8	8	nt
				<mark>Empl</mark>
	Unit-4: Two Dimensional Problem, and Thermal Stress			oyabi
	Introduction, Finite Element Modeling, Constant Strain Triangle (CST),			lity e.
	Displacement Equation, Iso-parametric Representation, Shape Function,			& Skill
	Examples			devel
	Introduction to thermal stress, Formulation of the Thermal Stress and			opme
4	Examples	7	7	nt
	Unit-5: Structural Dynamics and Application of FEM			Empl
	Introduction, Terminology used in dynamics analysis, Dynamics of Spring			oyabi
	Mass System, Numerical Integration in Time, Natural Frequency and Modes,			lity
	Undamped Free Vibration, Examples			<mark>&</mark>
	Application of Finite Element Method in fracture mechanics, fatigue, and			<mark>Skill</mark>
5	Fluid Flow	6	6	<mark>devel</mark>

			opme nt
Total	40	40	

Textbook references (IEEE format): Text Book:

- Chandrupatla and Belagundu, "Introduction to Finite Elements in Engineering", Prentice Hall of India Private Ltd
- 2. Bhavikatti "Finite Element Analysis" New Age International (P) Limited

Reference books:

- Cook Robert Davis, "Concept and Application of Finite Element Method", John Wiley & Sons
- 2. Reddy J. N., "An Introduction to The Finite Element Method", Mc Graw Hill

Additional Resources (NPTEL, MIT Video Lectures, Web resources etc.):

Evaluation Methods:

Item	Weightage
Quiz1: 5	
Quiz2: 5	-20
Assignment1: 5	20
Assignment2: 5	
Midterm	30
Final Examination	50

Prepared By: Prof. Amit Kumar Srivastava Last Update: 08-10-2015