Engineering Thermodynamics

Programme: B. Tech (MME)	Year: Second Year	Semester: III
Course: core	Credits: L-3+T-1= 4	Hours: 40(L)+14(T)

Objectives:

- To learn and use basic concepts of thermodynamics and understand and apply various laws to real life problems.
- To identify and explain the concepts of entropy, enthalpy, specific energy, reversibility, exergy and irreversibility.
- To acquire the knowledge of thermodynamic relations and its use with various applications.
- To understand and analyze vapor power cycles with calculation of performance parameters.
- To understand and analyze gas power cycles, gas turbines and jet propulsion with calculation of performance parameters.
- To understand and analyze refrigration cycles with calculation of performance parameters.

Prerequisites Courses: Nil

References:

Text Book:

• **P.K.Nag**, "Basic and Applied Thermodynamics" – Tata McGraw- Hill Pub.Co. Ltd.

• Y. Cengel & Boles, "Thermodynamics – An Engineering Approach", Tata McGraw Hill Publications Reference Books:

- **1.** Roger G.F.C. and Mayhew Y.R., "*Engineering Thermodynamics*" Pearson Education Ltd., 4th Edition, 1992.
- 2. P K Nag, "Power Plant Engineering" Tata McGraw –Hill Pub. Co. Ltd. 3rd ed., 2008.
- 3. C.P. Arora, "Engineering Thermodynamics", Tata McGraw Hill Publications
- **4.** Rayner J. "Basic Engineering Thermodynamics" Addison Wesley, 5th Edition.
- 5. Sonntag R.E.,Borgnakkec C. Van Wylen G.J. "Fundamental of thermodynamics", 6th Edition
- 6. P. Chattopadhyay, "Engineering Thermodynamics" Oxford Press

Additional Resources: NPTEL, MIT Video Lectures, Web resources etc.

Course Outcomes (COs): On completion of this course, the students will be:

C01	Able to understand the fundamentals of thermodynamics and its Laws and to apply	<mark>Unit 1</mark>
	it to real life thermal systems	

CO2	Able to identify and describe energy exchange processes with their effectiveness	Unit 2
CO3	Able to understand the thermodynamic relations and its application to various	<mark>Unit 3</mark>
	systems	
CO4	Able to understand introductory concept of vapor power cycles and calculate the	Unit 4
	performance parameters e.g. power output, efficiencies etc.	
C05	Able to understand introductory concept of gas power cycles, gas turbine & jet	Unit 5 and 6
	propulsion and to calculate the performance parameters of gas turbines e.g. power	
	output, efficiencies etc.	
C06	Able to understand introductory concept of refrigeration cycles and calculate the	Unit 7
	performance parameters e.g. cooling capacity, coefficients of performance etc.	

UNITS	COURSE TOPIC	Hours	Student development
UNIT1	INTRODUCTION TO THERMODYNAMICS	8	Employability
-	Introduction of thermodynamics, Review of basic definitions,		<u> </u>
	Thermodynamic properties and their units, Zeroth law of		
	thermodynamics, Macro and Microscopic Approach, First law of		
	thermodynamics, Steady flow energy equation and its application to		
	different devices. Limitations of First law, Second Law of		
	thermodynamics, Equivalence of Clausius and Kelvin Plank		
	Statement, Entropy		
UNIT	ENTROPY, AVAILABILITY AND IRREVERSIBILITY	7	Employability
2			
	Clausius inequality, concept of entropy, entropy change in different		
	processes, Tds equation, principle of increase in entropy, T-S		
	diagram, statement of third law of thermodynamics, entropy and		
	disorder, concept of exergy, available and unavailable energy,		
	availability and irreversibility, second law efficiency		
UNIT	THERMODYNAMIC RELATIONS	4	Employability
3			
	Maxwell's equation, T-ds equations and heat capacities, Energy		
	equation, Joule Kelvin effect, Clapeyron equation.		
UNIT	VAPOUR POWER CYCLES	6	
4			

	Properties of pure substances, Rankine cycle, Actual Vapour power		Employability
	cycle and comparison with Carnot cycle, Mean temperature of heat		and Skill
	addition, Reheat cycles, Ideal Regenerative cycles, Regenerative		development
	cycles, Reheat- Regenerative cycles including feed water heaters,		
	Binary vapour cycles, Process heat and byproduct power		
UNIT	GAS POWER CYCLES	5	Employability
5			and Skill
	Carnot, Sterling, Erricson, Otto cycle, Diesel cycle, Dual cycle, Comparison of A.S.C.		development
UNIT	GAS TURBINE AND JET PROPULSION SYSTEM	6	Employability
6			and Skill
	Closed cycle, open cycle, Brayton cycle, Effect of Pressure ratio on		development
	Brayton cycle, Intercooling, Reheating, and Regeneration, Advantage		
	and disadvantage of GT plants, Analysis of GT plant, closed cycle Gas		
	turbine, Semi-closed cycle GT plant, performance of GT plant,		
	Components of GT plant; Jet propulsion cycle, Rocket propulsion,		
	Turbojet engine, Ramjets and pulsejets		
UNIT	REFRIGERATION CYCLES	4	Employability
7			and Skill
	Reversed heat engine cycles, Gas cycle refrigeration, Vapour		development
	compression cycle, Refrigerants, Absorption cycle		

Evaluation Methods:

Item	Weightage
Quiz(s)	10
Assignment	10
Mid-term exam	30
End term exam	50

Prepared by: Dr. Kamal Kishore Khatri Last Update: 10th July 2018