Programme: B. Tech	Year : Second	Semester : IV
Course : Core	Credits :3	Hours: 40

Course Overview and Context:

The course objective is to highlight the fundamental concepts in Engineering Mechanics and their applications for the determination of the motion and interaction of machine elements as well as forces acting on machines and mechanisms. Specific applications will be made to mechanisms such as rotating machinery, cams, gears, and flywheels. The final objectives will be able to synthesize mechanisms and machine elements for specified performance, and then analyze the given mechanism for position, velocity, accelerations, static loads, and dynamic loads.

Prerequisite Courses: Engineering Mechanics.

Text Books:

- 1. Wilson, CE, Sadler, JP, *Kinematics and Dynamics of Machinery*, Prentice Hall Publication, 3rd Edition, 2001
- Uicker J J Jr., Pennock G R, Shigley J E, *Theory of Machines and Mechanisms*, 8/eMc Oxford Press, 3rd Edition, 2013
- 3. Norton R L, Kinematics and Dynamics of Machinery, McGraw Hill, 1st Edition, 1995

Reference books:

- [1] Ambekar, A G, Mechanism and Machine Theorys, Prentice Hall, 2013
- [2] Singh Sadhu, Theory of Machines, Pearson Education, 2007

Course Outcomes (COs):

The Outcomes of this Course are Student will be	
CO1: Acquire the knowledge of degree of freedom, joints, pairs and couplings	Unit 1 & 2
of machinery components of system.	
CO2: Able to analyze the relative velocities and accelerations of various links	<mark>Unit 3</mark>
of different mechanisms such four bar, crank-rocker, quick return, mechanisms	
through graphical and analytical methods.	
CO3: Acquire knowledge of static and dynamic forces acting on the different	<mark>Unit 3</mark>
link of machineries. Able to understand the gyroscopic forces and principles of	
governor, vibrations in engineering application.	
CO4: Acquire the knowledge to deal with Kinematic Analysis of Spatial	<mark>Unit 4</mark>
Mechanisms.	
CO5: Able to perform the analysis on different types of gears and their	<mark>Unit 5</mark>
characteristics.	
CO6: Able to analyze the kinematics of Cams and Followers motions.	<mark>Unit 6</mark>

Course Topics:

			Student	
				achieveme
Kinematics and Dynamics				
S.		т	Hr	
No.	Topics	L	S	
	The Components of Mechanism:			Employabi
	Review of classical mechanics. Joints, Pairs and Couplings.			lity & Skill
1	Mobility, Grashof's Law	3	3	nt
	Linkage Design:	-	5	Employabi
	Four-Bar Mechanism and Crank-Rocker Mechanism, Drag-Link			lity & Skill
	Mechanics, Designing for prescribed Velocity or Torque			developme
2		7	7	nt
	Dynamics of Planar Systems:			
	Static Force Analysis, Planar Dynamic Force Analysis, Methods			
	of Linkage Force Analysis, Force Calculations for Flywheel,			
	Gyroscopic Forces, Dynamic Modeling and Analysis Techniques			
	Velocity and Acceleration Diagrams, Instantaneous Centre of			Employabi
	Velocity, Rubbing Velocity, Velocity and Acceleration Images,	1		lity & Skill
	Corioli's component of acceleration. Working principle of		10	developme
3	governor. Introduction to vibration	2	12	nt Employabi
	Spatial Mechanisms:			Employabl
	Mobility, Describing Spatial Motions, Kinematic Analysis of			developme
4	Spatial Mechanisms	6	6	nt
-	Gears and Gear Trains:	Ŭ	Ŭ	
	Terminology, Law of Gearing, Characteristics of involute and			
	cycloidal action, Interference and undercutting, Centre distance			
	variation, Minimum number of teeth, Contact ratio, Spur, Helical,			
	Spiral bevel and Worm gears, Problems. Gear Trains: Synthesis			Employahi
	of simple, compound and reverted gear trains, Analysis of			lity & Skill
	Epicyclic gear trains			developme
5		6	6	nt
	Cams and Followers:			
	Introduction, Classification of Cams and Followers,			
	nomenclature, Displacement diagrams of follower motion,			<mark>Employabi</mark>
	Kinematic coefficients of follower motion. Synthesis and			<mark>lity & Skill</mark>
	analysis: Determination of basic dimensions and synthesis of cam			<mark>developme</mark>
6	profiles using graphical methods, cams with specified contours	6	6	nt
L				
		4		
1	Total	0	40	