The LNMIIT, Jaipur Department of Electronics and Communication Engineering Real Time Operating Systems (ECE-XXXX)

Programme:	Course Title:			Course Code:
B. Tech. (ECE)	Real Time Operating	ECE-		
Type of Course:	Prerequisites:	Total Contact Hours:		
Program	MICROI and Compu	40		
Elective				
Year/Semester:	Lecture Hrs/Week:	Tutorial Hrs/Week:	Practical Hrs/Week:	Credits:
6	3	3		

Learning Objective:

To serve real-time applications in modern consumer electronics devices, RTOS plays a significant role. Weather it is a smart watch, rover, or control system in an industrial production line, RTOS is functioning at the backend. This course will cover all the core concepts of real-time operating system design, followed by case studies and hands-on sessions. The student will be able to understand and design RTOS after completion of this course.

Course outcomes (COs):

On com	Bloom's Level	
CO-1	To define , explain and examine core features of RTOS.	1, 2, 4
CO-2	To recognize and evaluate , principles and applications of RTOS	1, 4
CO-3	To examine and demonstrate various outcomes of the OS design	3, 4
CO-4	To recognize and Implement Process Synchronization and Task Scheduling	1, 4
CO-5	To recognize and Implement Resource Allocation and Kernel features	1, 4
CO-6	To define , recognize and implement System startup, Memory management	1 2 2
	features in RTOS	1, 2, 3

Topics	Lect	ure Hours
UNIT – I (Introduction)		
1.1 Introduction, Motivation and Overview	1	4
1.2 Classification of operating systems	1	
1.3 Application of RTOS, components of Kernel	2	
UNIT – II (Task Scheduling)		
2.1 Basic Task Scheduling, Cyclic executives	2	
2.2 Cyclic executives and event driven schedulers	2	
2.3 Rate Monotonic algorithm and deadlocks	2	13
2.4 Process handling in RTOS	1	
2.5 Types of process and Interrupt Service Routines	2	
2.6 Round Robin, SJF, LST, EDF	4	
UNIT - III (Resource Allocation)		10
3.1 Semaphore and Mutex	2	10
3.2 Message Queues and Mailboxes	2	

The LNMIIT, Jaipur

Department of Electronics and Communication Engineering Real Time Operating Systems (ECE-XXXX)

3.3 Resource Sharing among Real Time Tasks	3]
3.4 Priority handling and Highest Locker Protocol	3	
UNIT - IV Real Time Kernel		
4.1 Kernel Architecture	2	
4.2 Hardware model and pooled loop systems	1	7
4.3 Memory Management	2	
4.4 PCB and Microkernel	1	
4.5 RTOS Porting and design issues	1	
UNIT - V Bootstrap and Case studies		
5.1 System Start-up	1	7
5.2 Task Startup	1	
5.3 Analysis of PCP priority inversions	2	
5.4 Unix as RTOS and Yocto Project	2	
5.5 Android Environment	1	

Textbook References:

- [1]. Qing Li, "Real Time concepts for Embedded Systems" CMP Books, 2003
- [2]. Jim Cooling "Real Time Operating Systems: Book 1" Independently published, 2017
- [3]. Charles Crowley, "Operating Systems-A Design Oriented approach" McGraw Hill,1997

Reference books:

- [1]. Karim Yaghmour, Building Embedded Linux System", O'reilly Pub, 2003
- [2]. Marko Gargenta,"Learning Android ",O'reilly 2011.

Additional Resources (NPTEL, MIT VEdio Lectures, Web resources etc):

[1]. Real Time Operating System by Prof. Rajib Mall, IIT Kharagpur Link: https://nptel.ac.in/courses/106/105/106105172/

Evaluation Methods:

Item	Weightage
Quiz1	10
Quiz2	10
Project and Lab	20
Midterm	30
Final Examination	40

^{*} Please note, as per the existing institute's attendance policy the student should have a minimum of 75% attendance. Students who fail to attend a minimum of 75% lectures will be debarred from the End Term/Final/Comprehensive examination.

The LNMIIT, Jaipur Department of Electronics and Communication Engineering Real Time Operating Systems (ECE-XXXX)

CO and PO Correlation Matrix

CO	PO	PSO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1									2	3	1	
CO2	3	3	2									3	3	1	
CO3	3	3	2	1		1						3	2	1	
CO4	3	3	3	2								3	3	2	
CO5	3	2	3	2				1				2	2	2	
CO6	3	3	3	2								3	3	2	

Last Updated On: 27 May 2021 Updated By: Abhishek Sharma

Approved By: