The LNMIIT, Jaipur

Department of Electronics and Communication Engineering Control System Engineering (ECE-327)

Programme:	Course Title:	Course Code:					
B. Tech. (ECE)	Control System and	Engineering		ECE327			
Type of Course:	Prerequisites:	Total Contact					
Program Core	Signal and Systems, Network Analysis and Synthesis Hours:						
		40					
Year/Semester:	Lecture	Tutorial Hrs/Week:	Practical	Credits:			
2/Even	Hrs/Week: 3	Hrs/Week: 0	3				

Learning Objective:

The objective of the control system engineering course is to provide students with an in-depth understanding of control system concepts and its various engineering applications, with an ability to independently face mathematical modelling of the control system design challenges.

Course outcomes (COs):

On com	Bloom's Level	
CO-1	Identify and analyse the physical and Electrical system and their	1,2
	Mathematical Models.	
CO-2	Understand and analyse the block diagram representation of systems and	2,3,4
	the use of block diagram reduction methods.	
CO-3	Understand the time and frequency domain representation of systems and	2,3,4
	their use to examine the performance and stability of systems.	
CO-4	Identify and apply the concept of stability to design the compensators and	2,3
	PID controllers.	
CO-5	Understand and acknowledge the state-space representation of systems.	1,2
CO-6	Apply the state-space approach for stability analysis and feedback	3,4
	controller design.	

Course Topics	Lecture Hours			
UNIT – I (Modelling of Physical Systems)				
1.1 Definition of control system, Open loop and Closed loop, Feedback				
and Feed-forward control				
1.2 Mathematical modelling of a physical system: Differential equations				
of a physical system, Laplace transforms, System analogies, and				
concept of transfer function				
1.3 Block Diagram Algebra and reduction methods, Signal flow graph—				
Mason's Gain formula.				
UNIT – II (Time and Frequency Domain Analysis of Systems)				
2.1) Standard test inputs, Time response of first order and second order				
systems.				

The LNMIIT, Jaipur

Department of Electronics and Communication Engineering Control System Engineering (ECE-327)

2.2 Steady state analysis: steady state error and error constants, transient response specifications.				
2.3 Stability analysis and design – Routh-Hurwitz criterion, Root Locus technique and design (Design of compensators using Root Locus).				
technique and design (Design of compensators using Root Locus).				
UNIT – III (Compensation and Controller Design)				
3.1 Correlation between time and frequency response, frequency domain specifications	2	12		
3.2 Nyquist plots, Bode plots – gain margin, phase margin 6				
3.3 Compensator design: Proportional, PI and PID controllers, Lead-lag (i.e. phase-lag/phase-lead) compensators using Bode plots				
UNIT – IV (Steady State Analysis of Systems)				
4.1 Concept of state, state variables and state model, State models for continuous time systems (SISO, MIMO) – derivation of transfer	2			
function from state models and vice versa		8		
4.2 Solution of state equations – state transition matrix, Controllability and Observability	3			
4.3 State feedback controller using pole placement, Observers. 3				

Textbook References:

Textbook:

1. Nagrath I. J. and M. Gopal, Control Systems Engineering, 5th Ed, New Age International.

Reference books:

- 1. Ogata Katsuhiko, *Modern Control Engineering*, 5th Ed., Pearson Education Publishers, 2010.
- 2. Benjamin C. Kuo, Automatic Control Systems, 7th Ed., Prentice Hall, New Delhi, 2002.
- 3. Richard Dorf and Robert Bishop, *Modern Control Systems*, 12th Ed., PHI, 2010.
- 4. Norman S. Nise, *Control Systems Engineering*, 6th Ed., Wiley India, 2011.

Additional Resources:

1. https://nptel.ac.in/courses/108/102/108102043/

Evaluation Method*					
Item	Weightage (%)				
Quiz1	10				
Quiz2	10				
Quiz3	10				
Quiz4	10				
Midterm	25				
Final Examination	35				

The LNMIIT, Jaipur

Department of Electronics and Communication Engineering Control System Engineering (ECE-327)

Note: *Due to the Covid-19 pandemic situation, evaluation components may change as directed by the academic office.

**Please note, as per the existing institute's attendance policy the student should have a minimum of 75% attendance. Students who fail to attend a minimum of 75% lectures will be debarred from the End Term/Final/Comprehensive examination.

CO and PO Correlation Matrix

Last Updated On: DD-MM-YYYY

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1					1	2		3	3	1	1
CO2	3	3	1	1	1				1	2		3	3	1	1
CO3	3	3	1	1	1				1	2		3	3	1	1
CO4	3	2	2	1					1	2		3	3	1	1
CO5	3	3	1	1	1				1	2		3	3	1	1
CO6	3	3	3	1					1	2		3	3	1	1

Updated By:	
	Approved By: