ECE214: Digital Circuits and Systems

Programme: B. Tech. (ECE) Year: 2nd Semester: I Course: Core for ECE, CSE, and CCE Credits: 3 Hours: 40

Course Context and Overview (100 words):

Introduction to the digital logic circuits and systems is towards the aim of designing the fastest growing technology digital systems over given specifications. This course will equip the students to think of their own digital processors and build them on hardware (ASICs or FPGAs). Some very common and daily life examples of digital systems out of millions are as follows: Digital watch, Vending Machine Controller (ATM machine), Digital Scientific Calculator using CORDIC algorithms, Washing machine controller (Hardware Part), Digital remote controls, Automatic digital locks, Digital games, Automatic digital control in cars, robots, Digital Cameras, Mobile Phones, etc.

Prerequisites Courses: NIL

Course Outcomes (COs):

On completion of this course, the students will have the ability to:			
CO1:	Know the basics of Digital design, number systems, and Boolean algebra		
CO2:	Convert from one number system to other and perform computations in various		
	number systems		
CO3 :	Minimize the Boolean expressions using Boolean algebra, K-maps and QM method		
CO4 :	Describe a logic function using CMOS logic		
CO5 :	Design combinational circuits including adders, encoder, decoders, multiplexers		
	and complex structures using logic gates and CMOs logic		
CO6 :	Design and analyze various sequential circuits like latches, flip flops and counter		
	using logic gates		
CO7 :	Describe and design Finite state machine and system implementation using FSM		

Course Topics:

Topics		Lecture Hours	
UNIT - I 1. Topic Number Systems & Codes	3		
1.1 About Digital Design, Analog versus Digital, Digital Devices, Electronic and Software aspects of digital design, Integrated Circuits.	1	3	
(1.2)-Positional Number Systems, Octal and Hexadecimal Numbers, Number System Conversions, Representation of negative numbers			
UNIT - II	4	4	

2. Topic Boolean Algebra and Minimization techniques				
2.1 Axioms, Single-Variable Theorems, Two and Three Variable	2			
Theorems	2			
2.2 Duality, Standard representation, combinational circuit	1			
minimization using K-Maps	_	=		
2.3 QM method	1			
UNIT - III 3. Topic CMOS Logic Design	9			
3. Topic CMOS Logic Design3.1 Digital Logic levels, MOS Structure and Transistor, Threshold				
Voltage, MOSFET V _{DS} -I _D Characteristics	2	9		
3.2 , Resistive Load Inverter, Active Load Inverter, CMOS Inverter,	2			
Calculation of VOH, VOL, VIL, VIH and Noise Margin	2			
3.3 Design and sizing of CMOS digital circuits	5			
UNIT - IV	8			
4. Topic Combinational Circuit Design	o			
4.1 Combinational logic circuit design, half and full adder, subtractor,	3			
Binary serial and parallel adders. BCD adder, Binary multiplier	3	8		
4.2 Decoder: Binary to Gray decoder, BCD to decimal, BCD to 7-				
segment decoder, Multiplexer, De-multiplexer, Encoders and Priority	3			
Encoders, Diode switching matrix				
4.3 Design of logic circuits using multiplexers, encoders, decoders	2			
and de-multiplexers. Designing of combinational systems: ALU etc.				
UNIT-V 5. Topic Sequential Circuit Design	10			
5.1 Latches, flip-flops, R-S, D, J-K, and Master Slave flip flops,	3	10		
Conversions of flip-flops: Counters		10		
Asynchronous (ripple), synchronous and synchronous decade				
counter, Modulus counter, skipping state counter, counter design. Ring	4			
counter, Counter applications	2	-		
8.3 Registers: buffer register, shift register	3			
UNIT-V 6. Topic Finite State Machines	6	6		
U. Topic I mile blace Machines				
6.1 Definition, classification, state machine analysis, excitation table	2			
of flip flops	۷			
6.2 Designing various synchronous sequential circuits using state	2			
machines W.				
6.3 Design Problems (Sequence detectors, Vending Machine	2			
Controllers etc.)				

Text Book:

- Milos D. Ercegovac, "Introduction to Digital Systems", Tom Lang, Jaime H. Moreno J. F. Wakerly, "Digital Design: Principles & Practices", Pearson Education. 1.
- 2.

3. Thomas L. Floyd and R. P. Jain, "Digital Fundamentals", Pearson Education, 8th Ed.

Reference books:

- 1. Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Circuits: Analysis and Design", Tata McGraw Hill.
- 2. S. Salivahanan & S. Arivazhagan, "Digital Circuits and Design", Vikas Publication House Pvt. Ltd., 2nd Ed.

Additional Resources (NPTEL, MIT Video Lectures, Web resources etc.):

https://onlinecourses.nptel.ac.in/noc15_ec01

Evaluation Methods:

Item	Weightage
Quiz 1	
Quiz 2	20
Quiz 3	20
Quiz 4	
Mid-term Examination	30
End-term Examination	50