ECE111: Analog Electronics

Programme: B.Tech. (ECE)	Year: 1 st	Semester: II
Course: Core for ECE, MME and CCE	Credits: 3	Hours: 40

Learning Objective:

This course serves as an intermediate analog electronic course. The course offers a comprehensive range of fundamental electronic device and circuit topics. The specific materials relate to analog electronics including diodes, bipolar-junction transistors (BJT), Operational Amplifiers (Op-Amps), basic single and multistage amplifier configurations, and integrated circuits using 555. This course in analog electronics offers analysis and design of analog electronic circuits, both discrete and integrated, required for an electronics engineer.

Course Outcomes (COs):

CO1	To learn the basics semiconductors and characteristics of PN diodes
CO2	To learn different design techniques and practical applications of PN diode
CO3	(To learn fundamentals and analysis of transistors and design practical amplifiers using it
CO4	(To learn designing techniques and practical applications of transistors oscillators and Op-
	Amp filter circuits.
CO5	To learn designing techniques and practical applications of 555 times as multivibrators and
	(fundamentals of ADC and DAC.

Course Topics		Lecture Hours	
Unit-I Fundamentals Of Diode	Total	Lectures (08)	
1.1. Basic Concepts: Intrinsic and Extrinsic Semiconductors, Drift and Diffusion Currents, Working of open diode and voltage applied diode circuits. Static and dynamic resistance, Diode's equivalent circuit, Transition and Diffusion capacitance.	04		
1.2. Diode Characteristics: Volt-Ampere characteristics, temperature dependence of V-I characteristics, Reverse Breakdown, Transient behavior of PN diode.	02	CO1	
1.3. Breakdown and other concepts : Zener and Avalanche breakdown, Load-line concept, piecewise linear diode model.	02		
Unit-II Diode Circuits		Total Lectures (05)	
2.1. Rectifiers: Half-wave rectifier, Full-wave rectifier and Bridge Rectifiers.		CO1	

Department of Electronics and Communication Engineering

2.2. Signal conditioning circuits: Clipping and clamping circuits.	02	CO2	
2.3. Special Diodes: Details of Zener Diode, Schottky, Varactor diode,	02		
Photo Diodes, and Light Emitting Diodes (LEDs).	01		
2.4. Diode Applications: Peak detector, Regulated DC power supply		-	
using Zener diode.	01		
Unit-III Bipolar Junction Transistors	Total	Lecture	es (12)
3.1. Transistor Fundamentals: NPN & PNP transistors, structure,			
typical doping, Eber-Moll model of transistor. NPN transistor and			
its modes of operation, Current components. Current gains: alpha	03		
(α) and beta (β). DC load line concept in BJT (V-I characteristics).			
Operating point (Q point) determination in BJT.			
3.2. Transistor as an amplifier: CE, CB and CC configuration. DC		-	
and AC analysis of single stage CE, CC and CB amplifiers.	02		
3.3. Biasing Techniques: Fixed bias (base bias), Collector feedback		CO3	
bias, Fixed bias with emitter resistor (emitter bias), Voltage divider	03		
biasing or emitter bias, Voltage divider with AC bypass capacitor.			
3.4. Small signal analysis of BJT: Small signal analysis of different		_	
(biasing circuits using r_e model.)	02		
3.5. Multistage Amplifiers: Cascade and Cascode connections,		-	
Darlington connections.	02		
Unit-IV Oscillators	Total	Lecture	es (04)
		Lecture	es (04)
Unit-IV Oscillators	Total 01		es (04)
Unit-IV Oscillators 4.1. Oscillator concepts and basic circuit: Positive feedback concept, Barkhausen criterion for oscillation.	01	Lecture CO4	es (04)
Unit-IV Oscillators 4.1. Oscillator concepts and basic circuit: Positive feedback concept,			es (04)
Unit-IV Oscillators 4.1. Oscillator concepts and basic circuit: Positive feedback concept, Barkhausen criterion for oscillation. 4.2. Oscillator circuits: Design and analysis of RC Phase shift, Wien	01		es (04)
Unit-IV Oscillators 4.1. Oscillator concepts and basic circuit: Positive feedback concept, Barkhausen criterion for oscillation. 4.2. Oscillator circuits: Design and analysis of RC Phase shift, Wien	01 03		
Unit-IV Oscillators 4.1. Oscillator concepts and basic circuit: Positive feedback concept, Barkhausen criterion for oscillation. 4.2. Oscillator circuits: Design and analysis of RC Phase shift, Wien bridge oscillator, Hartley, Colpitts, and Crystal Oscillator.	01 03 Total	- CO4	
Unit-IV Oscillators 4.1. Oscillator concepts and basic circuit: Positive feedback concept, Barkhausen criterion for oscillation. 4.2. Oscillator circuits: Design and analysis of RC Phase shift, Wien bridge oscillator, Hartley, Colpitts, and Crystal Oscillator. Unit-V Active Filter Circuits Using Op-Amp	01 03	- CO4	
Unit-IV Oscillators 4.1. Oscillator concepts and basic circuit: Positive feedback concept, Barkhausen criterion for oscillation. 4.2. Oscillator circuits: Design and analysis of RC Phase shift, Wien bridge oscillator, Hartley, Colpitts, and Crystal Oscillator. Unit-V Active Filter Circuits Using Op-Amp 5.1. Basics of Filters: Ideal and approximate responses of different	01 03 Total	- CO4	
Unit-IV Oscillators 4.1. Oscillator concepts and basic circuit: Positive feedback concept, Barkhausen criterion for oscillation. 4.2. Oscillator circuits: Design and analysis of RC Phase shift, Wien bridge oscillator, Hartley, Colpitts, and Crystal Oscillator. Unit-V Active Filter Circuits Using Op-Amp 5.1. Basics of Filters: Ideal and approximate responses of different filters.	01 03 Total	CO4	
Unit-IV Oscillators 4.1. Oscillator concepts and basic circuit: Positive feedback concept, Barkhausen criterion for oscillation. 4.2. Oscillator circuits: Design and analysis of RC Phase shift, Wien bridge oscillator, Hartley, Colpitts, and Crystal Oscillator. Unit-V Active Filter Circuits Using Op-Amp 5.1. Basics of Filters: Ideal and approximate responses of different filters. 5.2. Filter approximations: Sallen-key topology, Filter designs using	01 03 Total 01	CO4	
Unit-IV Oscillators 4.1. Oscillator concepts and basic circuit: Positive feedback concept, Barkhausen criterion for oscillation. 4.2. Oscillator circuits: Design and analysis of RC Phase shift, Wien bridge oscillator, Hartley, Colpitts, and Crystal Oscillator. Unit-V Active Filter Circuits Using Op-Amp 5.1. Basics of Filters: Ideal and approximate responses of different filters. 5.2. Filter approximations: Sallen-key topology, Filter designs using Butterworth, Chebyshev, inverse Chebyshev, Elliptical and Bessel	01 03 Total 01	CO4	
Unit-IV Oscillators 4.1. Oscillator concepts and basic circuit: Positive feedback concept, Barkhausen criterion for oscillation. 4.2. Oscillator circuits: Design and analysis of RC Phase shift, Wien bridge oscillator, Hartley, Colpitts, and Crystal Oscillator. Unit-V Active Filter Circuits Using Op-Amp 5.1. Basics of Filters: Ideal and approximate responses of different filters. 5.2. Filter approximations: Sallen-key topology, Filter designs using Butterworth, Chebyshev, inverse Chebyshev, Elliptical and Bessel	01 03 Total 01 03	CO4	es (04)
Unit-IV Oscillators 4.1. Oscillator concepts and basic circuit: Positive feedback concept, Barkhausen criterion for oscillation. 4.2. Oscillator circuits: Design and analysis of RC Phase shift, Wien bridge oscillator, Hartley, Colpitts, and Crystal Oscillator. Unit-V Active Filter Circuits Using Op-Amp 5.1. Basics of Filters: Ideal and approximate responses of different filters. 5.2. Filter approximations: Sallen-key topology, Filter designs using Butterworth, Chebyshev, inverse Chebyshev, Elliptical and Bessel approximations.	01 03 Total 01 03	CO4 Lecture CO4	es (04)
Unit-IV Oscillators 4.1. Oscillator concepts and basic circuit: Positive feedback concept, Barkhausen criterion for oscillation. 4.2. Oscillator circuits: Design and analysis of RC Phase shift, Wien bridge oscillator, Hartley, Colpitts, and Crystal Oscillator. Unit-V Active Filter Circuits Using Op-Amp 5.1. Basics of Filters: Ideal and approximate responses of different filters. 5.2. Filter approximations: Sallen-key topology, Filter designs using Butterworth, Chebyshev, inverse Chebyshev, Elliptical and Bessel approximations. Unit-VI 555 Timer	01 03 Total 01 03 Total	CO4 Lecture CO4	es (04)
Unit-IV Oscillators 4.1. Oscillator concepts and basic circuit: Positive feedback concept, Barkhausen criterion for oscillation. 4.2. Oscillator circuits: Design and analysis of RC Phase shift, Wien bridge oscillator, Hartley, Colpitts, and Crystal Oscillator. Unit-V Active Filter Circuits Using Op-Amp 5.1. Basics of Filters: Ideal and approximate responses of different filters. 5.2. Filter approximations: Sallen-key topology, Filter designs using Butterworth, Chebyshev, inverse Chebyshev, Elliptical and Bessel approximations. Unit-VI 555 Timer 6.1. 555 Details: 555 Timer internal circuit diagram and design details.	01 03 Total 01 03	CO4 Lecture CO4	es (04)
Unit-IV Oscillators 4.1. Oscillator concepts and basic circuit: Positive feedback concept, Barkhausen criterion for oscillation. 4.2. Oscillator circuits: Design and analysis of RC Phase shift, Wien bridge oscillator, Hartley, Colpitts, and Crystal Oscillator. Unit-V Active Filter Circuits Using Op-Amp 5.1. Basics of Filters: Ideal and approximate responses of different filters. 5.2. Filter approximations: Sallen-key topology, Filter designs using Butterworth, Chebyshev, inverse Chebyshev, Elliptical and Bessel approximations. Unit-VI 555 Timer 6.1. 555 Details: 555 Timer internal circuit diagram and design details. 6.2. Multivibrator Circuits: Design and analysis of astable, mono-	01 03 Total 01 03 Total	CO4 Lecture CO4	es (04)
Unit-IV Oscillators 4.1. Oscillator concepts and basic circuit: Positive feedback concept, Barkhausen criterion for oscillation. 4.2. Oscillator circuits: Design and analysis of RC Phase shift, Wien bridge oscillator, Hartley, Colpitts, and Crystal Oscillator. Unit-V Active Filter Circuits Using Op-Amp 5.1. Basics of Filters: Ideal and approximate responses of different filters. 5.2. Filter approximations: Sallen-key topology, Filter designs using Butterworth, Chebyshev, inverse Chebyshev, Elliptical and Bessel approximations. Unit-VI 555 Timer 6.1. 555 Details: 555 Timer internal circuit diagram and design details. 6.2. Multivibrator Circuits: Design and analysis of astable, mono- stable and bi-stable multivibrators using 555.	01 03 Total 01 03 Total 02	CO4 Lecture CO4	es (04)
Unit-IV Oscillators 4.1. Oscillator concepts and basic circuit: Positive feedback concept, Barkhausen criterion for oscillation. 4.2. Oscillator circuits: Design and analysis of RC Phase shift, Wien bridge oscillator, Hartley, Colpitts, and Crystal Oscillator. Unit-V Active Filter Circuits Using Op-Amp 5.1. Basics of Filters: Ideal and approximate responses of different filters. 5.2. Filter approximations: Sallen-key topology, Filter designs using Butterworth, Chebyshev, inverse Chebyshev, Elliptical and Bessel approximations. Unit-VI 555 Timer 6.1. 555 Details: 555 Timer internal circuit diagram and design details. 6.2. Multivibrator Circuits: Design and analysis of astable, mono- stable and bi-stable multivibrators using 555.	01 03 Total 01 03 Total 02 01	CO4 Lecture CO4	es (04) es (03)

Department of Electronics and Communication Engineering

7.1.D/A converters: DAC characteristics resolution, output input equations, Weighted resistor, R2R network	02 02 02		
7.2. A/D converter: ADC characteristics, flash ADC, Dual slope, Successive approximation, Tracking ADC.			
Total Lecture Hours		40	

Textbook & References Books

Text Books:

- 1. A.P. Malvino, "Principles of Electronics", Tata McGraw Hill
- 2. A.S. Sedra & K.C. Smith, "Microelectronic Circuits", Oxford
- 3. Jacob Millman & Christos C. Halkias, "Integrated Electronics", Tata McGraw Hill

Reference Books:

- 1. Robert Boylestad, "Electronic Devices and Circuit Theory", Pentice Hall
- 2. R.J Smith & R.C Dorf, "Circuits, Devices and Systems", John Wiley & Sons

Evaluation Method

Item	Weightage (%)
Quiz	20
Midterm	30
Final Examination	50

Attendance: Students with less than 75% attendance will get a penalty of 1 grade.

Mid Semester Exam: It will have 30% weightage on the overall marks in the course.

End Semester Exam: This exam will have 50% weightage of the overall marks in the course. Each unit in end semester examination will carry weightage proportional to the lecture hours.