LNMIIT, Jaipur Department of Computer Science & Engineering

Programme:	Course Title:		Course Code:		
B. Tech. CSE/CCE	Introduction t	o Big Data			
Type of Course: SLI	Prerequisites	: Admissibility to S	Total Contact Hours:		
Program Elective				2(L)+2(Lab) Equivalent	
Year/Semester: 4/8	Lecture	Tutorial Hrs/Week:	Credits:		
	2	0	Hrs/Week: 2	2-0-2-3	

Course Context and Overview:

Extreme data volume, velocity, and variety challenge conventional data-processing platforms and practices. Big data discipline trades some advantages of the established approaches to surmount the limitations of conventional storage infrastructures, data structures, databases and algorithms.

The course provides an understanding of the needs, purposes, and characteristics of the Big Data domain. The students will gain an understanding of the platforms for executing big data applications, algorithms, and analytical libraries.

Hadoop and Spark frameworks will guide the students in learning about the execution platforms that grow linearly with the problem size. The students will also learn how these systems stay resilient and tolerant against failures. The programming language Scala will be introduced as it provides the base for building Apache Spark Analytical libraries. The libraries contain algorithms and techniques for solving big data problems.

On successful completion, the students will be ready to continue learning big data tools, algorithms, and libraries for handling Streaming data, NoSQL and SQL databases, Machine Learning, Frequent Pattern Growth Algorithms, and Graph-based Analytics.

This subject is a hands-on self-study elective course requiring the students to demonstrate independent learning, regular on-computer exercises and program implementations.

Prerequisites Courses:

Operating systems, Programming, Introduction to Data Sciences, Design and Analysis of Algorithms.

Course outcomes (COs):

On com	pletion of this course, the students will have the ability to:	Bloom taxonomy Level
CO-1	Explain the purpose, concepts, and characteristics of big data applications	2
CO-2	Implement big data applications appropriate to the maturity level of an undergraduate student.	3
CO-3	Explain multi-computer clusters available for big-data needs using open-source software (for example, Hadoop and Apache Spark).	2
CO-4	Understand solutions using Analytics libraries available through Apache Spark	2

CSE Department, LNMIIT Jaipur

LNMIIT, Jaipur Department of Computer Science & Engineering

Week	Week Contents Topics							
(Date of intro	(Date of intro							
session)		Lectu	res + Labs					
	Preliminary/Introduction							
1	Meaning and implications of "big" in big data. Three Vs:	2	0					
13 Jan 2024	Volume, Velocity, Variety. Other properties of big data.							
2	Multi-computer processing. Java RMI.	2	4					
20 Jan 2024								
3	Examples of big data applications.	2	2					
27 Jan 2024	27 Jan 2024 Prepare and submit a big data proposal.							
	Hadoop Infrastructure							
4, 5	Hadoop framework – HDFS, MapReduce paradigm,	5	0					
3 & 10 Feb 2024	Combiner							
6	Single-node Hadoop setup	1	6					
17 Feb 2024								
7	Running word count problem on Hadoop setup.	2	2					
24 Feb 2024	Demonstration.							
	Midterm Examination							
8	Fault-tolerance in Hadoop.							
16 Mar 2024	Pseudo-distributed setup and word count problem							
9	Frequent Item Set problem; approaches to run the		•					
23 Mar 2024	algorithms as a big data exercise	2	2					
10								
	Overview of YARN	2	0					
30 Mar 2024								
F	Resilience Distributed Datasets and SPARK							
11	Introduction to Scala Install Scala and practice some	_						
6 April 2024	Scala code	2	2					
12	Spark basis, Spark execution model. Install Spark and run	2	3					
13 April 2024	examples		_					
13	RDD, RDD Frames, RDD Sets	1						
20 Apr 2024		2	0					
14	Wrap-up report: Prepare the final report describing the		5					
27 Apr 2024	lessons learned.							

CSE Department, LNMIIT Jaipur

LNMIIT, Jaipur Department of Computer Science & Engineering

Textbook References (IEEE format) :

Text Book:

- 1. [BD] Rathinaraja Jeyaraj, Ganeshkumar Pugalendhi, Anand Paul, Big Data with Hadoop Map Reduce: A Classroom Approach, Apple Academic Press, 2020.
- 2. [DL] Doug Lea, Concurrent Programming in Java: Design Principles and Patterns, 2nd Edn, The Java Series, Addison-Wesley, Boston, 2000.
- 3. [HADOOP] http://hadoop.apache.org/
- 4. [SPK] Bill Chambers and Matei Zaharia, SPARK: The Definitive Guide, O'Reilly Media, Inc, 2017.
- 5. [SCALA] https://www.scala-lang.org/
- 6. [SPARK] https://spark.apache.org/
- 7. [TW] Tom White, Hadoop: The Definitive Guide, 4th Edition, O'Reilley, 2015.

Evaluation Method:

Evaluation Method											
Item	Weightage (%)										
Quiz (2)	12										
Progress reports and Assigned Essays (3)	8+7+8=23										
Midterm	25										
Final Examination	40										

CO and PO Correlation Matrix For CSE Students

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	3	1	1		3	3	3	3	3	3	3
CO2	3	3	3	2	3	1	1		3	3	3	3	3	3	3
CO3	3	3	3	2	3	1	1		3	3	3	3	3	3	3
CO4	2	2	2	1	3	1	1		2	2	2	3	2	2	2

For CCE Students

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	3	1	1		3	3	3	3	1	2	3
CO2	3	3	3	2	3	1	1		3	3	3	3	1	2	3
CO3	3	3	3	2	3	1	1		3	3	3	3	2	2	3
CO4	2	2	2	1	3	1	1		2	2	2	3	2	2	2

Last Updated On: 20 December 2023

Updated By:

Approved By:

CSE Department, LNMIIT Jaipur