CSE3031: Digital Image Processing					
Year: 2	Semester: 4				
Credits: 3	Hours: 40				
	Year: 2 Credits: 3				

Course Context and Overview:

The course aims to provide the students an introduction to the fundamentals of image processing. Concepts of a typical image processing system will be covered including image enhancement, representation and recognition for application in principal areas. The course aims to develop a foundation for further study and research in this area. The course will augment theory with assignments in MATLAB and OpenCV.

Prerequisites Courses: NIL

Course Outcomes (COs):

On completion of this course, the students will have the ability to:				
CO1:	Understand fundamental concepts of digital image processing			
CO2:	Apply image enhancement transformations			
CO3:	Explain colour image processing			
CO4:	Describe image morphology			
CO5:	Understand basic concepts of image segmentation and image representation			

Course Topics:

Торіс	Lecture H	ours
UNIT – I		
1. Introduction to digital image fundamentals		
1.1 Introduction to digital image processing, applications,	1	4
Components of an image processing system		
1.2 Image sensing and acquisition, Sampling and quantization	1	
1.3 Pixel relationships	1	
1.4 Image operations	1	
UNIT – II		11
2. Image Enhancement		
2.1 Gray level transformations	1	
2.2 Histogram processing	3	
2.3 Spatial filtering, Convolution	3	

2.5 Frequency-domain filtering	4	
UNIT – III		4
3. Color Image Processing		
3.1 Color models	1	
3.2 Pseudocolor image processing	1	
3.3 Colour transformations	1	
3.4 Using color in image segmentation	1	
UNIT – IV		7
4. Morphological Image Processing		
4.1 Dilation, erosion, opening, closing	3	
4.2 Hit-or-miss transformation	1	
4.3 Basic morphological algorithms: Extraction of connected	3	
components, convex hull, skeletons		
UNIT-V		7
5. Image Segmentation		
5.1 Point/line/edge detection, Hough transform	3	
5.2 Thresholding, region-based segmentation	4	
UNIT-VI		7
6. Image Pattern Classification		
6.1 Patterns and Pattern Classes	2	
6.2 Pattern Classification: Prototype matching, deep learning	5	

Textbook references:

Text Book:

1. Rafael C. Gonzalez and Richard E. Woods, "Digital Image Processing", 4th Edition, Pearson, 2018.

Reference books:

2. Anil K. Jain, "Fundamentals of Digital Image Processing", Prentice Hall.

- 3. Bernd Janhe, "Digital Image Processing", 6th edition, Springer 2005
- 4. Kenneth R. Castleman, "Digital Image Processing", 2nd edition, Prentice Hall, 1995.

Evaluation Methods:

Component	Weightage
Continuous evaluation	30%
(quizzes, assignments,	
Projects)	
Midterm	25%
Final Examination	45%

Prepared By: Anukriti Bansal, Puneet Kumar Jain, Preety Singh Last Update: October 2019